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JOSÉ IOVINO

ABSTRACT. We prove a geometric characterization of Banach space stability. We show
that a Banach spaceX is stable if and only if the following condition holds. Whenever
X̂ is an ultrapower ofX and B is a ball in X̂, the intersectionB ∩ X can be uniformly
approximated by finite unions and intersections of balls inX; furthermore, the radius of
these balls can be taken arbitrarily close to the radius ofB, and the norm of their centers
arbitrarily close to the norm of the center ofB.

The preceding condition can be rephrased without any reference to ultrapowers, in the
language of types, as follows. Wheneverτ is a type ofX, the setτ−1[0, r ] can be uniformly
approximated by finite unions and intersections of balls inX; furthermore, the radius of
these balls can be taken arbitrarily close tor , and the norm of their centers arbitrarily close
to τ (0).

We also provide a geometric characterization of the real-valued functions which satisfy
the above condition.

1. INTRODUCTION

A separable Banach spaceX is stableif whenever(am) and(bn) are bounded sequences
in X andU,V are ultrafilters onN,

lim
U ,m

lim
V ,n
‖am + bn‖ = lim

V ,n
lim
U ,m
‖am + bn‖.

This concept was introduced by J.-L. Krivine and B. Maurey in [5], where the authors
proved that every stable Banach space contains almost isometric copies of`p, for some
1≤ p <∞. This generalized a result of D. Aldous [1] about subspaces ofL1.

The concept oftypeon a Banach space was introduced in [5] as well. IfX is a Banach
space anda ∈ X, the type realized bya is the functionτa : X → R defined byτa(x) =
‖x+ a‖. Thespace of types ofX, denotedT (X), is the closure of{τa | a ∈ X} in RX with
respect to the product topology. Thenormof a typeτ is τ (0).

The role played by types in [5] generalizes that played by random measures in [1]
Since [5], stable Banach spaces and types have been studied intensely. For a self con-

tained exposition, we refer the reader to [2].
Types can be viewed quite naturally in terms of Banach space ultrapowers as follows.

A type onX is a functionτ : X → R such that there exists an ultrapowerX̂ of X and an
elementa ∈ X̂ with

τ (x) = ‖x + a‖, for everyx ∈ X.

In this case, we will say thata realizesτ in X̂.
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Let X be a normed space. If the typeτ is realized inX, say, if τ = τa, then for any
r > 0, the set

τ−1[0, r ](1)

is the ball{ x ∈ X | ‖x+a‖ ≤ r }. Now, if τ is realized by an elementa ∈ X̂, whereX̂ is an
ultrapower ofX, the set (1) is the intersection ofX with the ball{ x ∈ X̂ | ‖x+a‖ ≤ r }. It
is then natural to ask whether (1) can be approximated by balls inX; if so, it is also natural
to ask whether the radius of these balls can be taken to ber , and even whether the norm of
their centers can be taken to beτ (0). In this paper we show that all of these approximation
properties in fact characterize Banach space stability.

Let X be a normed space. Ifτ ∈ T (X), let us say thatτ is approximableif for every
r > 0 and everyε > 0, the setτ−1[0, r ] is within ε of a set formed by finite unions and
intersections of balls inX. (See Definition 2.2.) Let us say thatτ isstrongly approximableif
τ is approximable and the radii of the balls approximatingτ−1[0, r ] can be taken arbitrarily
close tor , and the norm of their centers arbitrarily close to the norm ofτ . In Theorem 4.1,
we prove that the following conditions are equivalent for a separable Banach spaceX.

1. X is stable;
2. Every type onX is approximable;
3. Every type onX is strongly approximable.

By definition, every type onX is a pointwise limit of types realized inX. Thus, if X
is separable,T (X) is separable with respect to the topology of pointwise convergence. It
is a well-known fact that ifX stable, thenT (X) is strongly separable, i.e., separable with
respect to the topology of uniform convergence on bounded subsets ofX. The converse
was proved to be false by E. Odell (see [6, 8]). The preceding theorem explains to what
extent stability ofX is equivalent to approximability of types onX by types realized inX.

In Proposition 3.1, we characterize approximable functions in terms of finite repre-
sentability: Let f be a real-valued function onX which is uniformly continuous on every
bounded subset ofX. Then the following conditions are equivalent.

1. f is approximable;
2. WheneverY is finitely represented inX, there is a unique real-valued functiong onY

such that(Y, g) is finitely represented in(X, f ).

The proofs are based on ideas from model theory. Proposition 2.6 is inspired in the
“Definability of Types” lemma in [7].

We will make heavy use of Banach space ultrapowers. For an introduction, we refer the
reader to [3].

Throughout the paper,X denotes a normed space. IfM > 0, we denote byB(M) the
set of elements ofX of norm at mostM.

2. CONSTRUCTIBLE SETS AND APPROXIMABLE TYPES

Let us first recall that a positive boolean combination of the setsS1, . . . , Sn is a set
obtained fromS1, . . . , Sn by taking finite unions and intersections.

2.1. Definition. Let X be a normed space. AconstructionC in X is a positive boolean
combination of sets of the form

{ x ∈ X | ‖x + ai‖ ∈ Ii }, a1, . . . ,an ∈ X.

We writeC = C(a1, . . . ,an; I1, . . . , In). If I1, . . . , In = I , we writeC = C(a1, . . . ,an; I ).
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If C(a1, . . . ,an; I1, . . . , In) is a construction inX, we denote by

[ C(a1, . . . ,an; I1, . . . , In) ](2)

the subset ofX determined byC. We will call a subsetX constructibleif it is of the form (2).
If a1, . . . ,an are in a given subsetA of X, we say that the set (2) isconstructible overA.

Thus, the class of constructible subsets ofX is the ring generated by the balls inX.

2.2. Definition. Let X be a normed space and letf be a real-valued function onX. We
say thatf is approximableif the following condition holds. For every choice ofM, ε > 0
and every intervalI there exist a constructionC(a1, . . . ,an; J) andδ > 0 such that

1. B(M) ∩ f −1[ I ] ⊆ [ C(a1, . . . ,an; J) ];
2. B(M) ∩ [ C(a1, . . . ,an; J + [−δ, δ]) ] ⊆ f −1[ I + [−ε, ε]].

If, regardless of the choice ofM andε, the setC can always be chosen constructible over
a given subsetA of X, we say thatf is approximable overA.

We will express the fact that the inclusions (1)and (2)hold bysaying that [C(a1, . . . ,an; J)]
is (ε, δ)-equivalent tof −1[ I ] in the ball B(M).

Notice that if f : X→ R is approximable, then it is approximable over any given dense
subset ofX.

2.3. Proposition.Let X be a normed space and letf be a real-valued function onX. The
following conditions are equivalent.

1. f is approximable overA;
2. For everyM, ε > 0 and every intervalI of the form[α,∞) there exist a construction

C(a1, . . . ,an; J) with a1, . . . ,an ∈ A and δ > 0 such that[C(a1, . . . ,an; J)] is
(ε, δ)-equivalent tof −1[ I ] in B(M);

3. For everyM, ε > 0 and every intervalI of the form(α,∞) there exist a construction
C(a1, . . . ,an; J) with a1, . . . ,an ∈ A and δ > 0 such that[C(a1, . . . ,an; J)] is
(ε, δ)-equivalent tof −1[ I ] in B(M);

4. For everyM, ε > 0and every intervalI of the form(−∞, α] there exist a construction
C(a1, . . . ,an; J) with a1, . . . ,an ∈ A and δ > 0 such that[C(a1, . . . ,an; J)] is
(ε, δ)-equivalent tof −1[ I ] in B(M).

Proof. The equivalence(2) ⇔ (3) is immediate, the equivalence(3) ⇔ (4) follows by
taking complements, and the implication(3)& (4)⇒ (1) is proved by taking intersections.

Now we focus on a particular kind of real-valued functions, namely, types.

2.4. Definition. Let X be a normed space and letτ : X → R be a type onX. We will say
thatτ is strongly approximableif

· τ is approximable;
· The intervalJ of Definition 2.2 can always be taken arbitrarily close toI , and the

norm of can be chosena1, . . . ,an arbitrarily close to the norm ofτ .

2.5. Proposition.Let X be a normed space and letτ be a type onX. The following
conditions are equivalent.

1. τ is strongly approximable;
2. For everyM, ε > 0 and every interval of the form[0, α] there exist a construction

C(a1, . . . ,an; [0, β]) andδ > 0 such that
(i) [ C(a1, . . . ,an; [0, β]) ] is (ε, δ)-equivalent toτ−1[0, α] in B(M);
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(ii) |β − α| < ε and| ‖ai ‖ − ‖τ‖ ‖ < ε for i = 1, . . . ,n.

Proof. Immediate from Definition 2.4 and(1)⇔ (4) of Proposition 2.3.

2.6. Proposition.Suppose thatX is a stable Banach space. Then every type onX is strongly
approximable.

Proof. Let τ be a type onX. Take M, ε > 0 and an interval [0, α]. We will define a
constructionC(d1, . . . ,dr ; [0, β]) andδ > 0 such that

(I) B(M) ∩ τ−1[0, α] ⊆ [ C(d1, . . . ,dr ; [0, β]) ];
(II) B(M) ∩ [ C(d1, . . . ,dr ; [0, β + δ]) ] ⊆ τ−1[0, α + ε].
Takeβ andδ such that

α < β < β + δ < α + ε
Without loss of generality, we can takeδ such that

δ < min{ β − α, (α + ε)− (β + δ) }.(3)

Take also positive numbersη, η0, η1, . . . such that

δ < η0 < η1 < · · · < η
andη is less than the minimum in (3).

We will now construct, inductively,

· A sequencea0,a1, . . . in B(τ (0)+ ε);
· For i = −1,0,1,2, . . . , setsS(i ), T(i ) of subsets of{ 0, . . . , i };
· Elementsus

i+1 ∈ B(M) for s ∈ S(i ) andvt
i+1 ∈ B(M) for t ∈ T(i ).

Suppose that we have defineda0,a1, . . . ,an, S(−1), . . . , S(n−1), T(−1), . . . , T(n−1),
andus

i , v
t
i for i = 0, . . . ,n ands ∈ S(i ), t ∈ T(i ). We now define the setsS(n), T(n) and

the elementsus
i+1, v

t
i+1.

Let

S(n) = { s ⊆ { 0, . . . ,n } ∣∣ B(M) ∩ τ−1[0, α + ηn] ∩
⋂
i∈s

τ−1
ai

[β,∞) 6= ∅ }.
For eachs ∈ S(n), let us

n+1 be an element ofX such that

us
n+1 ∈ B(M) ∩ τ−1[0, α + ηn] ∩

⋂
i∈s

τ−1
ai

[β,∞).

Similarly, let

T(n) = { t ⊆ { 0, . . . ,n } ∣∣ B(M) ∩ τ−1[α + ε − ηn,∞) ∩
⋂
i∈t

τ−1
ai

[0, β + δ] 6= ∅ },
and for eacht ∈ T(n) let vt

n+1 be an element ofX such that

vt
n+1 ∈ B(M) ∩ τ−1[β + ε − ηn,∞) ∩

⋂
i∈t

τ−1
ai

[0, β + δ].

We now definean+1. Let

F = { us
i+1 | −1≤ i ≤ n, s ∈ S(i ) } ∪ { vt

i+1 | −1≤ i ≤ n, t ∈ T(i ) }.
SinceF is finite, there existsa ∈ F ∩ B(τ (0)+ ε) such that

x ∈ F ∩ τ−1[0, α + ηn] implies ‖a+ x‖ ∈ [0, α + ηn+1]
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and

x ∈ F ∩ τ−1[α + ε − ηn,∞)] implies ‖a+ x‖ ∈ [α + ε − ηn+1,∞).
Let an+1 be such an elementa.

2.7. Claim. Suppose that 0≤ i ≤ n ands ∈ S(i − 1), t ∈ T(i − 1). Then,

‖an + us
i ‖ ∈ [0, α + ηn]

and

‖an + vt
i ‖ ∈ [α + ε − ηn,∞).

Claim 2.7 follows immediately from the preceding definitions.

2.8. Claim. Suppose that 0≤ i (0) < i (1) < · · · < i (n) and

B(M) ∩ τ−1[0, α] ∩
n⋂

j=0

τ−1
ai ( j )

[β,∞)] 6= ∅.

Then there existb0, . . . ,bn ∈ B(M) such that

‖ai ( j ) + bk‖ ∈ [β,∞), for 0≤ j < k ≤ n

and

‖ai ( j ) + bk‖ ∈ [0, α + η], for 0≤ k ≤ j ≤ n.

Proof of Claim 2.8. Inductively, we constructb0, . . . ,bn such that

‖ai ( j ) + bk‖ ∈ [β,∞), for 0≤ j < k ≤ n

and

‖ai ( j ) + bk‖ ∈ [0, α + ηi ( j )], for 0≤ k ≤ j ≤ n.

First we note thatS(i (0)− 1) 6= ∅; in fact,∅ ∈ S(i (0)− 1) since

B(M) ∩ τ−1[0, α + ηi (0)] ⊇ B(M) ∩ τ−1[0, α] 6= ∅.
Takes ∈ S(i (0)) and letb0 beus

i (0). Then, by Claim 2.7 above, we have

‖ai ( j ) + b0‖ ∈ [0, α + ηi ( j )], for 0≤ j ≤ n.

Assume that we haveb1, . . . ,bk as desired. Lets= { i (0), . . . , i (k) }. From the defini-
tion of S(i (k)), we must haves ∈ S(i (k)). Let bk+1 beus

k+1. Then

‖ai ( j ) + bk+1‖ ∈ [β,∞)], for 0≤ j ≤ k,

and by Claim 2.7,

‖ai ( j+1) + bk+1‖ ∈ [0, α + ηi ( j+1)], for 0≤ k ≤ j ≤ n− 1.

We have proved Claim 2.8.

2.9. Claim. Suppose that 0≤ i (0) < i (1) < · · · < i (n) and

B(M) ∩ τ−1[α + ε,∞)] ∩
n⋂

j=0

τ−1
ai ( j )

[0, β + δ] 6= ∅.

Then there existc1, . . . , cn ∈ B(M) such that

‖ai ( j ) + ck‖ ∈ [0, β + δ], for 0≤ j < k ≤ n
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and

‖ai ( j ) + ck‖ ∈ [α + ε − η,∞), for 0≤ k ≤ j ≤ n.

Proof of Claim 2.9. The proof is analogous to that of Claim 2.8. We constructc1, . . . , cn

inductively such that

‖ai ( j ) + ck‖ ∈ [0, β + δ], for 0≤ j < k ≤ n

and

‖ai ( j ) + ck‖ ∈ [α + ε − ηi ( j ),∞), for 0≤ k ≤ j ≤ n.

2.10. Claim. There exists a numberN ∈ N with the following property. Whenever 0≤
i (0) < · · · < i (N) ≤ 2N,

(i) There does not exist a sequence(bk)0≤k≤N in B(M + τ (0)+ ε) satisfying

‖ai ( j ) + bk‖ ∈ [β,∞), for 0≤ j < k ≤ N,

‖ai ( j ) + bk‖ ∈ [0, α + η], for 0≤ k ≤ j ≤ N;(4)

(ii) There does exist a sequence(ck)0≤k≤N in B(M + τ (0)+ ε) satisfying

‖ai ( j ) + ck‖ ∈ [0, β + δ], for 0≤ j ≤ k ≤ N,

‖ai ( j ) + ck‖ ∈ [α + ε − η,∞), for 0 ≤ k < j ≤ N.
(5)

Proof of Claim 2.10.Suppose that the claim is false. Then, for arbitrarily largeN ∈ N there
will be 0 ≤ i (0) < · · · < i (N) ≤ 2N and, either sequence(bk)0≤k≤N in B(M + τ (0)+ ε)
such that (4) holds, or a sequence(ck)0≤k≤N in B(M + τ (0)+ ε) such that (5) holds. Now,
for any givenN there are finitely many choices for 0≤ i (0) < · · · < i (N) ≤ 2N. Hence,
König’s lemma provides a subsequence(an(l))l∈N of (an) and, either a sequence(bk)k∈N in
B(M + τ (0)+ ε) such that

‖ai (l) + bk‖ ∈ [β,∞), for 0≤ l < k,

‖ai (l) + bk‖ ∈ [0, α + η], for 0≤ k ≤ l ,

or a sequence(ck)k∈N in B(M + τ (0)+ ε) such that

‖ai (l) + ck‖ ∈ [0, β + δ], for 0≤ l ≤ k,

‖ai (l) + ck‖ ∈ [α + ε − η,∞), for 0≤ k < l .

Either case contradicts the stability ofX. Claim 2.10 is proved.

Fix N as in Claim 2.10. Define

{ d1, . . . ,dr } = { ai ( j ) | 0 ≤ i (0) < · · · < i (N) ≤ 2N, 0 ≤ j ≤ N }
and

C(d1, . . . ,dr ; [0, β]) =
⋃

0≤i (0)<···<i (N)≤2N

⋂
0≤ j≤N

τai ( j ) [0, β].(6)

Condition (II) follows directly from Claim 2.9 and the choice ofN. To prove (I),
suppose thatx ∈ B(M) andx /∈ [C]. Fix one of the intersections in (6). The elementx
is not in this intersection, so there exists an indexi ( j0) such thatx /∈ τai ( j0)

[0, β]. Now
take anN-element subset of{1, . . . ,2N} not containingai ( j0) and consider the intersection
corresponding to this set in (6). Repeat the argument to findi ( j1) distinct fromi ( j0) such
thatx /∈ τai ( j1)

[0, β]. The argument can be iteratedNÝ times. But then, Claim 2.8 and the

choice ofN imply x /∈ τ−1[0, α].
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Remark. It is well-known that the space of types of a stable Banach space isstrongly
separable, i.e., separable with respect to the topology of uniform convergence on bounded
sets. (The converse is not true; see [6, 8].) This is immediate from Proposition 2.6. In
fact, it is easy to see that if every type onX is approximable, then the density ofT (X)
with respect to the strong topology must equal the density ofX (with respect to the norm
topology).

3. APPROXIMABLE FUNCTIONS

Let X be a normed space and letf be a real-valued function onX which is uniformly
continuous on every bounded subset ofX. An ultrapowerof (X, f ) is defined as follows.
If U is an ultrafilter,(X̂, f̂ ) is the ultrapower of(X, f ) with respect toU if

· X̂ is the ultrapower ofX with respect toU ;
· Wheneverx ∈ X̂ and(xi )i∈I is representative ofx in X̂, we havef̂ (x) = limU ( f (xi ))i∈I .

The fact that f is uniformly continuous on the bounded subsets ofX ensures thatf̂ is
well-defined.

An ultrapower(X̂, f̂ ) of (X, f ) has the property that it isfinitely represented in(X, f ).
This means that wheneverE is a finite dimensional subspace ofX̂ andM, ε > 0, there exists
a finite dimensional subspaceF of X such that(E, f̂ � E) and(F, f � E) are(1+ ε)-
isomorphicin the sense that there exists a(1 + ε)-isomorphismϕ : E → F satisfying
| f (ϕ(x))− f̂ (x)| ≤ ε for everyx ∈ E of norm at mostM.

Let X andY be normed spaces containing a common subsetA. If ε > 0, we say that
X andY are(1+ ε)-isomorphic overA if there exists a(1+ ε)-isomorphismϕ : X → Y
such that such thatϕ � A is the identity. We will say thatY is A-finitely represented inX
if the following condition holds. Givenε > 0 and a finite dimensional subspaceF of Y,
there exists a subspaceE of X such that the spacesspan[E ∪ A] and span[F ∪ A] are
(1+ ε)-isomorphic overA.

We will now characterize approximability of real-valued functions in terms of finite
representability. Let us first notice the following.

Remarks.

1. If X andY contain a common subsetA andY is A-finitely represented inX, then
there is an ultrapower(X̂, f̂ ) of (X, f ) and an embeddingϕ : Y→ X̂ which fixesA
pointwise.

2. If (X̂, f̂ ) is an ultrapower of(X, f ) and f is approximable overA, then so is f̂ ;
in fact, if 0 < M < M ′, 0 < ε < ε′ < ε′′, and 0< δ < δ′ < δ′′ are such
that

[
C(a1, . . . ,an; J)

]
X is (ε′ − ε, δ′′)-equivalent tof −1[ I + [−ε, ε]] in the ball

BX(M ′), then
[
C(a1, . . . ,an; J + [−δ, δ] ]X̂ is (ε′′, δ′ − δ)-equivalent tof̂ −1[ I ] in

the ballBX̂(M).

3.1. Proposition.Let X be a normed space and letf be a real-valued function onX which
is uniformly continuous on every bounded subset ofX. Then, if A is a subset ofX, the
following conditions are equivalent.

1. f is approximable overA;
2. WheneverY ⊇ A andY is A-finitely represented inX, there is a unique real-valued

functiong onY such that(Y, g) is A-finitely represented in(X, f ).

Proof. (1)⇒ (2) follows easily from the preceding remarks. We prove(2)⇒ (1).
Suppose thatf is not approximable overA. TakeM, ε > 0 and an intervalI such that

there do not exist [C(a1, . . . ,an; J) ] with a1, . . . ,an ∈ Aandδ > 0 with [ C(a1, . . . ,an; J) ]
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(ε, δ)-equivalent tof −1[ I ] in the ball B(M). Without loss of generality, we can assume
that I is bounded.

Let

C = {C(a1, . . . ,an; J) | a1, . . . ,an ∈ A andB(M) ∩ f −1[ I ] ⊆ [ C(a1, . . . ,an; J) ]
}
.

By our assumption, wheneverC(a1, . . . ,an; J) ∈ C andδ > 0,

B(M) ∩
(

[ C(a1, . . . ,an; J + [−δ, δ]) ] ∩ { f −1[ I + [−ε, ε]]
)
6= ∅.

Also, C is closed under finite intersections. Hence, there exists an ultrapower(X̂, f̂ ) of
(X, f ) andb ∈ X̂ such that

b ∈ B(M) ∩
⋂

C(a1,...,an;J)∈C
[ C(a1, . . . ,an; J) ] ∩ { f̂ −1[ I + [−ε/2, ε/2]].

Now, notice that ifa1, . . . ,an ∈ A andb ∈ [ C(a1, . . . ,an; (−∞, α]) ], for everyβ > α

we must have

B(M) ∩ f −1(I ) ∩ [ C(a1, . . . ,an; (−∞, β]) ] 6= ∅
(otherwise, [C(a1, . . . ,an; [β,∞)) ] ∈ C and b ∈ [ C(a1, . . . ,an; [β,∞)) ], which is
impossible). Hence, there exists an ultrapower(X̂′, f̂ ′) of (X, f ) andb′ ∈ X̂′ such that

(i) f̂ ′(b′) ∈ I ;
(ii) b′ ∈ [ C(a1, . . . ,an; (−∞, α]) ] whenevera1, . . . ,an ∈ Aandb ∈ [ C(a1, . . . ,an; (−∞, α]) ].

By (ii), there is an isometry betweenspan[{b}∪ A] andspan[{b′} ∪ A] mappingb to b′ and
fixing A pointwise. Butspan[{b} ∪ A] andspan[{b′} ∪ A] are A-finitely represented inX
and f̂ (b) /∈ I , so we are in contradiction with (2).

4. APPROXIMABLE TYPES AND STABILITY

We now prove the main result.

4.1. Theorem.Let X be a separable Banach space. Then the following conditions are
equivalent.

1. X is stable;
2. Every type onX is approximable;
3. Every type onX is strongly approximable.

Proof. (1)⇒ (3) is Proposition 2.6. We prove(2)⇒ (1).
Suppose thatX is not stable. Then there exist bounded sequences(am) and(bn) in X

and real numbersα, β such that

sup
m<n
‖am + bn‖ ≤ α < β ≤ inf

n<m
‖am + bn‖.(7)

Without loss of generality, we can assume that(am) is type determining, i.e., there exists a
typeτ ∈ T (X) such thatτ (x) = limm→∞ ‖am+ x‖ for everyx ∈ X.

By (7) there exists an ultrapowerX̂ of X, an elementa ∈ X̂, and typesρ1, ρ2 on X̂ such
that

· (X̂, ρ1) and(X̂, ρ2) are finitely represented in(X, τ );
· ρ1(a) ≤ α andρ2(a) ≤ β.

But thenτ cannot be approximable, by Proposition 3.1.
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Remark. The concepts considered here are particularizations of concepts from the logical
analysis of stability in [4]. Indeed, the notions of type, constructible subset, and approx-
imable function correspond (respectively) to the “quantifier-free” versions of the notions of
type, definable subset, anddefinable real-valued relationconsidered in [4].

REFERENCES

[1] D. Aldous. Subspaces ofL1 via random measures.Trans. Amer. Math. Soc., 267:445–463, 1981.
[2] S. Guerre-Delabrière.Classical Sequences in Banach Spaces. Marcel Dekker, New York, 1992.
[3] S. Heinrich. Ultraproducts in Banach space theory.J. Reine Angew. Math., 313(3):72–104, 1980.
[4] J. Iovino. Stable Theories in Functional Analysis. PhD thesis, University of Illinois at Urbana-Champaign,

1994.
[5] J.-L. Krivine and B. Maurey. Espaces de Banach stables.Israel J. Math., 39:273–295, 1981.
[6] E. Odell. On the types inTsirelson’s space. InLonghorn Notes, Texas FunctionalAnalysis Seminar, 1982–1983.
[7] A. Pillay. Geometric Stability Theory. Clarendon Press, Oxford, 1996.
[8] Y. Raynaud. Stabilité et séparabilité de l’espace des types d’un espace de Banach: Quelques exemples. In

Seminarie de Geometrie des Espaces de Banach, Paris VII, Tome II, 1983.

DEPARTMENT OFMATHEMATICAL SCIENCES, CARNEGIEMELLON UNIVERSITY, PITTSBURGH, PA 15213
E-mail address: iovino@cmu.edu


