STABLE BANACH SPACES
AND BANACH SPACE STRUCTURES, Il
FORKING AND COMPACT TOPOLOGIES

JOE IOVINO

ABSTRACT. We study model theoretical stability for structures from functional analysis.
We prove a functional-analytic version of the Finite Equivalence Relation Theorem. We
also the Stability Spectrum Theorem for Banach space structures.

1. INTRODUCTION

In [3], we introduced the notion of model theoretical stability for Banach space struc-
tures and gave several characterizations of stability. Here we study further properties of
stable theories.

In Sections 3 and 4 we introduce the concept forking for positive bounded formulas and
prove some properties which characterize forking. The proofs in these sections are direct
adaptations of the corresponding proofs in classical model theory, but we include them for
completeness.

In Section 5 we prove a functional analytic version of the Finite Equivalence Relation
Theorem:

Theorem. Let p € §(A) andg; andgz be two distinct nonforking extensions pover
a modelE containingA. Then, ifN > || p||, there exists a pseudometgcon (By)" such
that

1. pis definable oveA;

2. (Bn)" is compact with respect to;

3. There existg > 0 such thatp(a1, a) > €, wheneve@; realizesqi, anda, real-
izesqp.

We call this result the “Compact Pseudometric Theorem”. The role played by equiva-
lence relations in classical model theory is mirrored in this context by pseudometrics, and
the role played by finiteness is mirrored by compactness.

Section 7 is devoted to superstability. To characterize superstability in terms of forking
in this context, a topological analysis of forking is needed. Namely, if an extension forks,
“how much” does it fork? This type of analysis is developed in Section 6.

In Section 8 we prove that the Stability Spectrum Theorem for Banach Space structures
for the case when the uniform structure is metrizable. Finally, in Section 9, we provide
two examples: an example of a Banach space structure which is superstable but not
stable with respect to the metidcon the space types, and an example of a structure which
is stable but not superstable with respect to the same metric. Both structures consist of
Hilbert spaces with operators.
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We extend to this paper the assumptions and notational conventions of [3]. We deal with
Banach space structures, positive bounded formulas, and approximate satigfagtith
¢ andyr are positive bounded formulag,< ¥ means thaty is an approximation op. If
¥ is a set of positive bounded formulas, denotes the set of approximations of formulas
in 3.

Throughout the papefl denotes astable positive bounded theory over a countable
language. The lette® denotes a monster model for The norm of a finite tuple i€ is
its £oo-norm. The norm of a type is the norm of a tuple realizing the typ& i a subset
of € or a set of typesi3n (X) denotes the set of elementsXfof norm less than or equal
to N. We write B(X) instead of31(X).

The letteril denotes a fixed uniform structure on the space of typds d&fnless speci-
fied otherwise, all the vicinities mentioned are vicinitiesof

2. THE TOPOLOGY OF FORMULAS

If ¢ isanL(&)-formula, we letfp] = {p € S(T) | ¢ € p}. Thelogical topology
on S(T) is defined as follows. The basic closed sets are the sets of the fofmThis
topology is Hausdorff. The setsg[] need not be open. However, f € S(T), the sets
{[v]] v € ps}form a basic system of neighborhoodsof

The logical topology is not compact: For < o, let gm(X) be the formuld|x| > m.
Then [go] 2 [¢1] 2 ..., but(\ -, ¢m] = @. However, by the compactness theorem,
the restriction of the logical topology N ( S(T) ) is compact, for everfN > 0. Hence,
the logical topology is locally compact aadcompact.

If A C B, the restriction map frons(B) onto S(A) is continuous with respect to the
logical topology. Sincésn ( S(B) ) is compact, for everyN > 0, the restriction map from
BN (S(B)) ontoBn(S(B)) is closed.

In this paper, when we refer to topological properties of sets of types, the underlying
topology is assumed to be the logical topology.

3. FORKING

In this section and the next, we define the concept forking in Banach space model theory
and prove some properties which characterize it. Any of the approaches to the calculus of
forking available in the literature can be transposed, more or less straightforwardly, into
the context Banach space model theory. Nonetheless, we have included the proofs for
reference, inasmuch as they are short. We have followed the approach of M. Ziegler’'s
lecture notes [8].

Let(x | i € |) be a sequence of variables. Aype in(x; | i € |) is a setp of
formulas in the variablegx; | i € |) such that for everym > 0 andiy,...,in € I, the
restriction ofp to formulas in the variables, ..., x;, is a type.

If A C ¢, the set of types ovein the variableg x; | i € | ) is denotedS (A).

We shall use boldface lettegs g, ... to denote types ir§ (¢). The barred letters
a, b, ... will denote sequences indexed byregardless of the cardinality of

LetE € Aandletp € § (A). We say thap isfinitely realized inkE if for every positive
bounded formulap(X, &) € p and everyyr > ¢ there existdl € E such thatE =4
¥ (0, 8). (This concept was introduced in [3] for types in a finite number of variables.)

3.1. Definition. Let A C &, andp € S (€). We say thap does not fork oved if p is
finitely realized in every model containing.

Proposition 3.2. Let A € &. Every type oveA has an extension ove® which does not
fork overA.
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Given a sequence of variablés; | i € 1), we will denote byNa(xi | i € 1) the
following set:
(Xi X; 5) il7~--,in€|,6€@
7 T There exists a modé 2 A such thatE" € o (€, b)

3.3. Lemma(Fundamental Existence Lemmdj p € S (&) and
P2Na(Xi|iel),
thenp does not fork oveA.

Proof. Let E be a model containing\. We wish to show that i (X, b) € p andy > ¢,
then there existd € E such thatE = 4 v (0, b). Take suchy andy. If there is nod € E
as above, thelE C negy (€, b)), so negy (X, b)) € Na(xi | i € |) € p. But this
contradicts the consistency pf =

Proof of Proposition 3.2 By the Fundamental Existence Lemma, we only have to show
that p U \Va is consistent. Suppose, by way of a contradiction, that it is inconsistent.

Claim. There existN >0,an L(A)-fprmulal//(i), modelsEsy, ..., Ey containingA, and
L (&)-formulaso1(X, by), ..., om(X, bm) (with all the parameters exhibited) such that

. Xl = N A ¢(X) is realized in every model;
« B Coi(€ by, fori =1,...,m;
. U (X)) A AL 0i (X, bi) is inconsistent.

Proof of the Claim.Suppose thap U Na(x | i € |) is inconsistent. Then there exist
¢ € py andoi(X, €1), ..., om(X, bm) € NMa, such that

m
o) A [\ o (X, bi)

i=1

is inconsistent. We can assume thas of the form||X|| < N A ¥ (X), whereN is larger
than the norm of the restriction pfto the variables. =

Now we show that the claim contradicts the stabilityTofFix an infinite cardinak, in
order to prove thal is x-unstable with respect to the discrete uniform structure ALlet
the least cardinal such that 2 «.

A simple compactness argument shows that can assume th&t'shef the claim are
isomorphic to€. This assumption allows us to apply the claim iteratively. We find models
Es, fors e m<*, and tupleds -1, .. ., bs~m € Es, such that

() Et C Es,ifsCt;
@ii) IXll = N Ay (X) isrealized in eaclks;

(i) Es~j € A0j(Es, bs~j), forsem<*andi =1,...,m;
(V) ¥(X) A A, 0i (X, bs) is inconsistent, for everg € m=*.
Let A = U{BS | s € m<*}. We have car@d) < «. For each = 1, ..., mand each

£ e m, the set
{IKI < NAYE) }U{0i (R, bs~i) [S~i CE}

is consistent, by (i)—(iii). Lete be a type extending this set. By (iW; # g, if £ and
n are distinct sequences . Hence, car@S,(A)) > 2* > «, soT is notx-stable with
respect to the discrete uniform structure. =
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Let p(X) andq(X) be types oveg. Let

(€, PylyxeL - (€, Qp)px)eL
be corresponding morleyizations (see[3]). . Foe- 0, we define

dist( p|Bn, qIBn ) = SUP{ | PplBN — QplBN Il

p(X) el }

Then dist is a metric o8(BN).
The following concept was introduced in [4].

3.4. Definition. A type p over ¢ is almost overA if conj”(p) is a compact subset of
( S(Bn), dist), for everyN > 0.

Proposition 3.5. Let A be a subset of, and letp € S (¢). The following conditions are
equivalent.

(1) p does not fork oveA.

(2) pisthe heir ofp| E, for every modeE containingA.

(3) pis definable over every model containiAg

(4) pis almost definable oveh.

(5) p has at mosg®o-manyA-conjugates.

(6) There exists a cardinal such thatp has at most manyA-conjugates.

Proof. SinceT is stablep is definable. Thus, (3)—(5) are equivalent by Corollary 8 of [4].
The implication(2) = (1) is given by Theorem 8.7 of [3], an@®) = (2) is clear. We now
prove(1l) = (3).

Let E be a model containind\. We show that everf-automorphism of¢ fixes p.
The Beth Definability Theorem [2] will then imply that is definable ovelE. Let f
be such an automorphism. Take a formul&, b) € p, a formulay (X, f(€)) € f(p),
and approximationg’ > ¢ andvy’ > . Sincep is finitely realized inE, there exists
U € E such that= ¢/(0,b) A v/(0,€). Since f fixes E pointwise, we also have=
¢’ (0, b) A y/(Q, f(€)). We have shown thagi, U ( f(p))4 is consistent. We conclude,
then, thatf (p) = p. =

4. PROPERTIES OF FORKING

4.1. Definition. Let A C B, andp € S(B). We say thaip does not fork oveA, or thatp
is a nonforking extension gf| A, if p has an extensiop over € such thap does not fork
overA.

Property 1 (Uniqueness)Let A € B andp, g € S(B). If pandqg do not fork overA and
p|A = q|A, thenp andq are conjugates oveA.

First we show the following lemma.

4.2. Lemma. Suppose thatp@/A U b) does not fork oveA. Then every extension of
tp(b/ A) over € is an A-conjugate of some extensiontptb/A U a).

Proof of the LemmaThe hypothesis means that there exists an extepsidtp(a/ A U b)
which does not fork oveA. .
Let g be an extension of th/A). We seek a conjugatg of g, extending tgb/ AU a).

Claim. Let E be a model containing\.. Then

(1) There exists ar-automorphismf of € such thatf (q) extendsp( b/f(E)). )
(2) There exists ahUb-automorphisng of & such thaig(p) extendspa/g(f (E)) U b).
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Proof of the claim.(1): Takebg such thaty extends tpbo/E). Let f be anA-automorphism
of & mappingbg to b. Then f (q) extends tpb/f (E)).
The proof of (2) is similar. =

Take now a modeE O A such that is definable oveE. Let f andg correspond to
E as in the claim, and let’ = g(f (q)). Thenq' is definable oveg(f (E)), soq’ is the
heir ofq'|g(f (E)) = tp(b/ g(f (E))). Also, by hypothesis tpa / g( f E)) U b) is finitely
realized ing( f (E)). This means that b / (g(f (E)) U a) is the heirof tgb / g(f (E))).
But heirs are unique, sg must extend tpb / g(f (E))). —

Proof of Property 1.Let p = tp(b/A). By Proposition 3.2, there exists a model> A
such that tpE/A U b) does not fork overA. Let p be the heir of tgh/E). We show that
every extensiom of p which does not fork oveA is an A-conjugate ofp. Take such an
extensiory. By the preceding lemma, there is Arconjugatey’ of g that extends tfb/E).
By Proposition 3.5¢ is the heir of tgh/E). Thusq’ = p. -

Property 2 (Isomorphism) Let A € B and p € S(B). If p does not fork oveA andq is
A-isomorphic top, theng does not fork oveA.

Proof. Clear. —

Property 3 (Heir). A type p does not fork over a modd if and only if p is the heir of
pIE.

Proof. By Proposition 3.5. =

Property 4 (Existence) Let A € B. Every type oveA has an extension oveB which
does not fork oveA.

Proof. By Proposition 3.2. =

Property 5 (Monotonicity) LetA € B € C andp € S(C). If p does not fork oveA,
then p does not fork oveB and p|B does not fork oveA.

Proof. Clear. 4

Property 6 (Continuity). Letp € S(B).

(1) If AC B, p(X) € S(B) and p forks overA, there exists a formula € p, such that
every extension g| A containingy forks overA.

(2) For everyp(x) € S(B) there exists a countable subset®fover whichp does not
fork.

Proof. (1): An extensiong(X) of p|A is nonforking if and only ifq is consistent with
plAUNA(X). Now, pis a forking extension op| A; hence, there exists a formupac p,
such thaf ¢ } is inconsistent withp| AU Aa(X). Any extension ofp| A containingy must
fork over A.

(2): Letp(X) be an extension gp which does not fork oveB. By Proposition 3.5p
is almost definable ove. But thenp is almost definable over a countable sutBgof
B.(See [4].) Again by Proposition 3.5, we conclude tpatoes not fork oveBy. =

Property 7 (Boundedness)lf A C B, every type oveA has at mos2® nonforking ex-
tensions oveB.

Proof. From Proposition 3.5 and Uniqueness. =
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Property 8 (Transitivity). Let A C B € C and p € S(C). If p does not fork oveB and
p|B does not fork oveA, thenp does not fork oveA.

Proof. Take an extensiop of p and an extensioq of p|B such thap does not fork over
B andq does not fork oveA. Thenp does not fork oveB, so, by Uniquenesq andq
areB-conjugate. Thug does not fork oveA. =

4.3. Definition. Let A, B, C be subsets of. We say thatA and B areindependent over
Ciftp(A/C U B) does not fork oveC.

Proposition 4.4. (1) (Symmetry)A and B are independent ovet if and only if B and A
are independent ovet.

(2) A1 U A2 and B are independent ovet if and only if A1, B are independent ovet,
and Ay, B are independent oveT.

Proof. (1): Suppose thah andB are independent ov€l. Take an extensiomof tp(A/CU
B) which does not fork ove€. By Lemma 4.2 there exists an extensgaf tp(B/C U A)
such thag is aC-conjugate op. Hence, tgB/C U A) does not fork ove€.
(2): The following conditions are equivalent (the second equivalence is a consequence
of Monotonicity and Transitivity):
. A1 U Ay andB are independent over;
. A1, B are independent ovek; U C, and Ay, B are independent ovér;
. A1, B are independent ov&, and Ay, B are independent oves.

For AC BandM > 0, let
NMu (B, A) ={pe Bu(S(B)) | pdoes not fork oveA}.

Proposition 4.5(Open Map Theorem)if A € B and M > 0, the restriction map from
Nu (B, A) ontoBpy (S(A)) is open.

Proof. Without loss of generality, we can assuBe= €&. LetU be an open subset of
Nm (e, A). Let

U={qeNu(& A | gJAcUJA}.

By Uniquenessy is a union ofA~conjugates oU, and hence it is open. Therefore,
Bm(S(A) \U|A = (Nm (€, A)\ U)|Ais closed, andl | A is open. -

5. THE COMPACT PSEUDOMETRICTHEOREM

One of the goals of this paper is to point out the analogy between the role played by
pseudometrics in the model theory of Banach space structures and the role played by equiv-
alence relations in classical model theory; also, the analogy between the role played by
compactpseudometrics in analysis and that playedibite equivalence relations in alge-
bra. One of the central results of classical stability theory is Shelah’s Finite Equivalence
Relation Theorem [6]. In this section we prove the analogous result, involving compact
pseudometrics, for Banach space structures:

5.1. Theorem(Compact Pseudometric Theorenbet p € $,(A) andq; and gz be two
distinct nonforking extensions pfover a modeE containingA. Then, ifN > | p||, there
exists a pseudometricon (Bn)" such that

(1) p is definable over,;
(2) (Bn)"is compact with respect to;
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(3) There exists > Osuchthatp(d;, a) > €, wheneveg; realizesq;, anda, realizesgp.

In the proof we will use the fact (proved by A. Weil in his classic monograph [7]) that a
uniform structure that has a countable base is metrizable. Furthermore, we will use some
fine aspects the construction given in the proof.

Proposition 5.2. Let®J be a uniform structure oX. Let{ Uy | m < w} be a sequence of
subsets oK x X such that:

. Up= X x X;

. Un is a vicinity ofg, for eachm > 0;

« Una1oUmy1 o U1 € Uy, for everym.

Then there exists a pseudometsion X such that

(D) Unc{xy|pXy <27} € Uy, for eachm > 0;
(2) If f is a bijection ofX such thatf (Uy) = Uy, for everym, thenf (p) = p.

If every vicinity of 2J contains somé&J,, then it follows from (1) tha®J is the uniform
structure ofp. In particular, if the topology of is Hausdorff, therp is a metric.

For the proof of the preceding proposition, we refer the reader to Bourbaki [1] or J. Kel-
ley’s book [5].

Proof of the Compact Pseudometric TheoreBinceq; # 2, there exists a formula(x, y),
atupleé € E, and an approximatiott of ¢ such that

*) @(X, 8 €qu, V(X, € ¢ Q.
Now, given formulas

o1(X, y) < 01(X, Y)

ok(X, Y) < op(X, ),

we define a set of pairs

Vlo1,07,...,0k 0¢] < B)" x (BN)"
as follows:V[o1, 07, ..., ok, oy] is the set of all pairsc, ¢') such that for every nonforking
extensiorr (y) of tp(é/A) and evernyi =1, ..., K,
oG Yy)er implies  o/(€,y) er
ai(€,yer implies  o/(€,y) €.
Step 1. The family
U ={V[o1,01,...,0k.0¢] | oi <of, kK<w}

is a base for uniform structure a8y )" (in the sense of Chaptérof [5] ).

Proof of Step 1.Since the definition o¥/ [o1, ai, e, Ok, oé] is symmetric inc and¢’, each
V € U is a symmetric subset @BN)" x (Bn)". It is also clear that eactt € U contains
the diagonal of Bx)". Now we check the remaining conditions.
For everyVy, Vo € 0 there existdV € 2 such thatW C Vi1 N Vs Let
V1 =V[o1, 01, ..., 0k o4,

Vo =V[t1, 74, ..., 1, 7]
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W = V[o1,07,...,0k O, T1, T35 - - > T, T I
thenW C Vi N Va.
For everyV € 9 there existdV € 2 such thatW o W C V: Suppose
V =Vlo1, 074, ..., 0k oyl
Choosel -formulasty (X, ¥), ..., (X, ¥) such that

01X, y) < (X, ) < 01(X, Y)

ok(X, ) < (X, ¥) < og(X, ).
Let
W = V[o1, 11, ..., Ok, Tk, T1, 07, - - - » Tks O]
ThenW oW C V. —
Since, by assumption, the language is countabls,countable. Take subsét¥y, | m < w }
of X x X such that:
« Vo= X x X;
. Vi is a vicinity of g, for eachm > 0;

« Vim+1 © Ving1 © Vi1 € Vi for everym;
. Every vicinity of 0 contains som&/y.

Let now p be a pseudometric oy which corresponds téVy, | m < w} as in Proposi-
tion 5.2. Theny is a base for the uniform structure of
Step 2. p is definable oveA.

Proof of step 2.We just need to show thdt(p) = p for every A-automorphismf of &.
Let f be such an automorphism. By Isomorphism and Uniqueness,
{ f(r) | r is a nonforking extension of {g/A) } =
{r | r is a nonforking extension of tg/ A) }

Hence, for(C, ¢) € (BN)™ x (Bn)", we have(E, ©) € Vifand only if (€, &) € f(V),i.e.,
f(V) =V. Thus, f(Vm) = Vin for everym, and f (o) = p by Proposition 5.2. —

Step 3. (Bn)" is closed with respect tp.

Proof of Step 3.Suppose that there exists a sequef@gg in (BN)" such thaty,, — Cas
m — oo. We show tha€t € (Bn)". Takee > 0, and let

V=V[IXl <N, X <N+e].
For for largem, we have(Cy, €) € V, so||C|| < N + €. Sincee is arbitrary, we must have
ce (B —
Step 4. (Bn)" is compact with respect to.

Proof of step 4.By Step 3, we only need to prove thdy)" is precompact with respect
to p. Suppose that this is not the case. Then there e&istsO and a sequenc&n,) in
(Bn)", such thap (i, €j) > 8, fori < j < w.

Let « = (2%)*. Sincep is definable overA, the compactness theorem provides a
sequencéd; |,i < «) such thato(di,d;) > §/2, fori < j < k. SinceY is a base for
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the uniform structure o, there exists/ € 2 such thatdi, dj) ¢ V, fori < j < «. By
refining the sequenced; | i < « ), we can assume that is of the formV{o, o’], where
o ando’ are positive bounded formulas. Thus, for each gaif) withi < | < « there
exists a typei j (y) such that

(i) ri,j is a nonforking extension of (g/A)

(i) o(di,y) eri,jando’(dj,y) ¢rij,orelses(dj,y) €rijando’(di,y) ¢ri;.

Fora < «, defineX, = {rjj | o(dy,y) € ri,j }. From (ii) above, we see thi, # Xg

fora < B < «. But this is impossible because, by (i) and Boundedness, there can be at
most Z suchX,’s. —

_ Now we finish the proof of the proposition. Takle andd; such thatd; realizesqs,
dy realizesy, andd; andd; are independent ovet. By Proposition 4.4, t(d; ~ do/E)
does not fork oveA. By Symmetry and Monotonicity,

(**) tp(&/ AU dy U dp) does not fork oveA.

LetV = V[g, ¥] (Wherep andys are the formulas chosen in the second line of the proof).
From(x) and(xx), we concludedi, d) ¢ V. Thus, there exists > 0 such that

() ,O(al, dz) > 4.

TakeM < N such tha@, b (Bm(E))". By Steps 2 and 4,(,(Bm)(E) )" is precompact
with respect tqo. Hence, there exist;, d; € E such that

- - 8 - - 8

Let now C; 9nd Gz be realizations ofy; andgp. Then taci/E) = tp(dy/E) and
tp(C2/E) = tp(d2/E). Thus,

5 1) - §
p(C1,dy) < 5 p (€2, dy) < s
From (1) and (%), we concludeo (€, Cp) > % This finishes the proof of the theorem.—

5.3. Definition. Let a andb be n-tuples in€. We say tha& andb have the same strong
type overA, and write stga/ A) = stp(b/ A), if p(&, b) = 0, whenevep is a pseudometric
defined on soméBy)", with N > ||a]||, ||b]|, such that

(1) p is definable over,

(2) (Bn)"is compact with respect to.

5.4. Theorem. Leta andb ben-tuples in¢. The following conditions are equivalent.
(1) stpa/A) = stp(b/A).

(2) tp(a/E) = tp(b/E), for every modeE containingA.

(3) tp(a/E) = tp(b/E), for some modekE containingA.

Proof. (1) = (2) is the Compact Pseudometric Theore®) = (3) is clear. We prove
3 = Q).

Take a modeE containingA such thattpa/E) = tp(b/E), and suppose that Sy A) #
stp(b/A). FindN > ||a], ||b|| and a pseudometric on (Bn)" such that

(i) p is definable ove,;
(i) (Bn)" is compact with respect to;
(i) p(@, b) > «, for somex > 0.
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Claim. There existK with [|a]|, |[b]| < K < N satisfying the following property. For
everye > Othere exist, C; € Bk (E) such thato(a, €1) < € andp(b, Cp) < ¢.

Proof of the Claim.We prove the assertion far (this is clearly sufficient). Suppose, by
way of contradiction, that there exikt with ||a|] < K < N ande > 0 such that the-ball
of radiuse arounda does not intersedix (E). By (ii), there exists a positive integesuch
that there are at most, . . ., G € Bn(E) with p(G, €j) > gfor l<i<j=<t.

Now, for M ands with K < M < Nand0< 5 < § < ¢, lets(M, 6) be the largest
integerm such that there exist, ..., Cm € Bm(E) with (G, ¢j) = éforl <i < j <m.
If K <M < M < Nand§ <8 <4 < ¢ thens(M,§") < s(M',6) < t, so there
exist Mg and 8, such thats(M, §) = s(Mg, §g) for M andé with Mg < M < N and
% <8 <81 <e.

Take My andédp with Mg < M1 < N and§ < 8o < 81 < €. Lets = s(Mo, 81).
TakeCy, ..., Cs € Bm(E) with p(Gi, €j) =81 for1l <i < j < s. By our contradiction
hypothesisp(a, &) > ¢ > §1fori =1,...,s. Hence,

|=A5|>_<1,--.,>_<s,)7( /\ X1 < Mo A IVl < Mo A

1<i<s
N e xp =8 A N ,0()7,>'<i)281>.
l<i<j<s 1<i<s

SinceE <4 €,

E|=5|>?1,.--,>_<s,)7< /\ Xl =Mz A IVl <M1 A

1<i<s

N\ P, %) =80 A Ap(y,xi)zso).

1<i<j<s 1<i<s
But then, since the-ball of radiussy arounda does not intersedBy_1(E), we have
s(My, 80) > s+ 1, which contradicts the choice d; andsg =

Now we conclude the proof of the theorem. By the claim, there €xist, € E such
thatp(a, ¢1) < 5 andp(b, C2) < 5. The formulaj|x — ¢1|| < Fisintp(@/E), but notin
tp(b/E). Thus, tga/E) # tp(b/E). 4

6. FORKING EXTENSIONS

In first-order model theory, an extension of a type to a larger set of parameters can be
either forking or nonforking. In Banach space model theory, a finer analysis of forking is
needed. Namely, when one extension is forking, we need to specify “how much” it forks.
For instance, suppose that the uniform structilis metrizable. Then an extension of a
type ise-forking if it is at leaste-away from any nonforking extension.

In this section, rather than developing a quantitative theory of forking, we prove the
necessary facts about forking extensions to prove the Spectrum Theorem in Section 8.

We begin by proving the following fact about uniform structures which is interesting in
its own right. It states that the neighborhoods of the topology given by a uniform structure
on the space of types are “uniformly definable”.

Proposition 6.1. For every vicinityU there is a vicinityW € U with the following prop-
erty. For every type € $,(B) there exists a set df(B)-formulasX (X) such that

(1) Ifg e $(B) andg 2 %, then(p,q) € U.
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(2) If (p,q) € W, theng 2 %.

Proof. Take a vicinityV corresponding t&J as in (2-iii) of the definition of uniform struc-
ture [3]. In turn, takéN corresponding t&/ in the same fashion. Thev C V C U.
Let

1) =(¥'(X, b) | (Y(X, Y), ¥'(X, §)) € DV), ¥(X,b) € p, be QB}
T2(X) =(negy (X, b)) | (¥(X, y), ¥'(X, ¥)) € D(V), negy’(X, b)) € py, be QB}.

Now defineX (X) = Z1(X) U Z2(X).
(1): Take a typey(X) € S(B) extendingX. We prove thatp, q) € U. Fix

(p(X, 9), ¢'(X,y)) € DWU)
andb € QB. We show that for every” > ¢’,
* p(X,bye p implies ¢"(X.b)eq
(**) @(X,b)eq implies  ¢”(x,b) € p.

Fix 9" > ¢'. Find (¢, ¥') € D(V) such thaty < ¢ andy’ < ¢”.

Suppose (X, b) € p. Theny (X, b) € p and by definitiony’(X, b) € £1 € q. Hence,
¢" (X, b) € q. This proves (*).

If "(X,b) ¢ p, then negy”(X,b)) € p, so negy’(X,b)) € p.. By definition,
negy (X, b)) € £ C q. Hencep(X, b) ¢ g. This proves (**).

(2): Supposép, q) € W. Then(p, q) € V, soq 2 £1. We prove that, als@ 2 X.

Suppose thaty, ¥') € D(V) and negy’(X, b)) € py for someb € QB. Then
negy’ (X, b)) is an approximation of a formula ip, so there existg/” > v’ such that
negy” (X, b)) e p. By the choice ofV, there existgy, x’) € D(W) such that) < x and
x' < ¥". We havey'(X, b) ¢ p. Theny (X, b) ¢ q (since(p, q) € W), so negy (X, b)) €
Q. —|

6.2. Definition. Let U be a vicinity. LetA € B, andp € S(B). We say thatp U-
forks overA, or thatp is anU-forking extension op|A, if (p,q) ¢ U whenever is a
nonforking extension op over B.

Corollary 6.3. Let A C B, and letW correspond tdJ as in Proposition 6.1. Then for
every typep(X) € S(B) there is a set of (B)-formulas®y (X) such that

(1) If pdoes notJ-fork overA, then®dy U p|Ais consistent.

(2) Ifg > oy U p|A, theng does not fork oveA and (p, q) € U.

Proof. Let p be a nonforking extension ofover B. Let W and X correspond t as in
Proposition 6.1 and defingy (X) = £ U Na(X). -

Corollary 6.4. Let A € B and p € S(B). Thenp forks overA if and only if p U-forks
over A, for some vicinityJ .

Proof. < is clear. To prove=, suppose thap does notJ-fork over A, for any vicinityU .
By Corollary 6.3, the set

plIAU () @u
Uesdl
is consistent. Hence, there exists a tgmaich thaty does not fork oveA, and(p, q) € U
for every vicinityU, i.e.,q = p. =

The following corollary is a refinement of the Open Map Theorem.
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Corollary 6.5. Let A € B, and letW correspond tdJ as in Proposition 6.1. Then, if
p € S(B) and p U-forks overA, there exists a formula € p; such that any extension of
{¢} U p|A mustW-fork overA.

Proof. Let ®y be asin Corollary 6.3. ThepU &y is inconsistent, so there exisiss p4
such thaf ¢ } U p|AU @y is inconsistent. By Corollary 6.3, any extension{gf} U p|A
mustW-fork over A. =

6.6. Definition. Let A € B, and letp € S(B). If U is a vicinity, we say thap definably
U-forks overA, or thatp is a definablyJ -forking extension op| A, if there exists a formula
¢ € p4+ such that any type containing mustU-fork over A. In this case we say that
definesp as aU-forking extension ofp| A.

Corollary 6.5 says that for every vicinity there exists a vicinitfy’ € U such that if
every type whichJ-forks over A mustW-fork over A definably.

Proposition 6.7. Let A € A’. Suppose thap(X) € S(A) and p’ is a definablyJ -forking

extension op over A'. Suppose also that

. EDA

. FDOA;

. g is a nonforking extension qf over E;

. I is a nonforking extension gfoverF.

Then, there exists

. AmodelF’ such thatF <4 F’;

. A nonforking extension’ ofr overF’;

. An elementary embeddiny: E <4 F’ such thatr’ is a definablyJ -forking extension
of f(p).

4 I
A DefinablyU-forking .~ A
v et : nonforking
-
E F q '
\J\ J\ nonforking J nonforking
ACH A o« o p/

DefinablyU -forking

Remarks.

(1) Suppose definesp’ as aU -forking extension op. Theng defines any extension gf
containingy as aU -forking extension. Therefore, the conclusion thas a definably
U -forking extension off (p) is redundant.

(2) The modelF’ can be taken with densitF’) < densityE) + density(F).

Proof of Proposition 6.7 For eachc € E, choose a new nam&. By Proposition 10.2,
cl(g) C cl(r). Hence, the set
EX) =r(X)UNe(X) U{e(X, )| ¢XC) € g )

is consistent . Letc” | c € E) be an interpretation of the constaiits | ¢c € E) such that
the interpretatior’ — ¢” makesx consistent oveF U {¢” | c € E }. The lemma follows
immediately by definingf (c) = ¢”. =
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7. FORKING AND SUPERSTABILITY

7.1. Definition. Let U be a vicinity. LetAg C A; C ... be a countable chain of subsets
of €. A U-forking chain overA; | i < w) is a chain of typegp € p1 C ... such that
pj € S(Aj) for eachj < w, andpj is aU-forking extension ofg;, for everyi < j.

We say that the chaifp; | i < w) is a definablyU-forking chainif p; is a definably
U -forking extension ofg;, for eachi < j.

7.2. Lemma. Suppose thatp; | i < w) is a definabldJ -forking chain over A | i < w).

Suppose also that eadk is separable. Then for eadh< w there exist(Aj j | | < w)
and a definabléJ -forking chain(pij | j < o) over(Ajj | j < w) such that for each
| < o,

(1) Ajj is separable;

(2) Ao= At

3) Aj 2 Atjts

(4) (pi,jlAj+1, Pi+j+1) € U.

Proof. Fixi < . We constructp; j | j < ) and(Aij | j < o) such that
(1) A is separable;,

(2 Ao= A1

3) Aj 2 At

(4) pi,j is a nonforking extension gfjj41 overA j.

This will prove the lemma.

Fixi < w. We defineA; j andp;,j by induction onj. Let A; o = Ai1, and letp; o be
a nonforking extension gbj over A o. Suppose now tha4; ; andp; ; have been defined,
in order to defineA; j1 andpj j11.

Take a separable modEl © A, j;2 and a nonforking extensianof pj j;1 overF.
Proposition 6.7 provides a separable extengioof F and a nonforking extensiari of r
over F" such that’ is a definablyJ -forking extension of; j. We defineA; j;1 = F" and
Pij+1="r". .

The following proposition establishes the first connection betwéeorking chains
and stability.

Proposition 7.3. Suppose that for some vicinity, there exists & -forking chain. Then,
if « is a cardinalk such thatc® > «, the theoryT is «-unstable with respect td.

Proof. Suppose thatp; | i < w) is aU-forking chain overnA; | i < w). Corollary 6.5
allows us to assume thap; | i < w) is a definablyU-forking chain, and that each;
is separable. Iterative application of Proposition 6.7 yields separablé Aglss € «<“)
and typeq ps | s € k=) such that for each € «=“,
(1) (ps~i | S€K=?,i < w)isaU-forking chain over Asj | S€ «=?,i < w);
(2) As~j is separable;
(3) As~i~0= As~(i+1);
(4) As~inj 2 Asn(i+j+D);
(5) (Ps~injlAs~(i+j)> Ps~i+j+1) ¢ U.

Let A = g <o As. Then cardA) < « by (2).

For eaché € «®, let p: be an extension df Jsc, <~ ps over A. Thenpg € S(A), for

scé&
everyt e k. We prove thatpg, p,) ¢ U, for& # «. This will show thafT is notx-stable
with respect td.l, because then the density 8fA) with respect tdl is greater thar (but
card A) < k).
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Take distinct sequencésn € «®. Then there exiss € 2<“ and distinct integers
andj such thats ~i C £ ands ~ j C n. We may assume < j. Takek such that
s~i~kCE.

By (5) above,
(Ps~i~0, Ps~i+1) ¢ U.
But
Ps~i~0 & Ps~i~k & P
and
Ps~i+1 S Ps~j S Py-
Hence,(ps, py) ¢ U. —

7.4. Definition. A theory T is superstablewith respect tal if T is «-stable with respect
to 4, for every cardinak with « > 2%,

7.5. Theorem. The following conditions are equivalent.

(1) T is superstable.

(2) For any vicinityU, there is ndJ -forking chain.

3) If p € S(A) andU is a vicinity, there is a finite tupl@ € A such thatp does not
U-fork overa.

(4) If A C ¢, the set oh-types that do not fork over some finite subsefd$ L(-dense in

S(A).

Proof. (1) = (2): Suppose that there isla-forking chain, for some vicinityJ. Take a
cardinalk such thatc > 2% and«™ > «. By Proposition 7.3 is not«-stable with
respect tdl. Hence,T is not superstable.

(2) = (3): Let p € S(A), and suppose that U-forks over every finite subset &f. Let
W correspond t&J as in Corollary 6.5. Inductively, we find a chain of finite subset&pf
Ag € A C ... suchthatp|A;j is aW-forking extension ofp| A, fori < j.

(3 = (4: Fix avicinity U and a typep € S(A). Finda € A such thatp does not
U-fork overa. By the definition ofU -forking, there exists a nonforking extensigof p|a
over A, such thatp,q) € U.

(4) = (1): Letk > 2%, and letA be a set of cardinality. For eachd € A there
are at most ¥ types overd, and each of them had'®nonforking extensions ovek (by
Boundedness). Therefore, there are at mog&t'o = « types overA which 2% do not fork
over some finite subset &. Thus, densityS(A)) < «. =

8. STABILITY SPECTRUM

In this section, the terms “stable” and “density character” are to be taken with respect
to our fixed uniform structurél.

8.1. Theorem. Suppose thal is metrizable. Then, for any theofy, one of the following
conditions must be true:

(1) T is not stable;

(2) T is« stable for every infinite cardina;
(3) T is«-stable if and only ik > 28o;

(4) T is k-stable if and only ik™° = «.
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Proof. Suppose thaf is superstable. Then, eith€ris w-stable, and (2) holds, or densi§E)) >
Ro for some separable modegl In this case, the reader can show that, in fact, de(&(gy)) >
2%, 50T is notk-stable forkg < ¥ < 2%, Hence, (3) holds.

Now suppose thart is stable but not superstable in order to prove (4). Take a cardinal
« such thak < «™0. By Theorem 7.5, there existdaforking chain, for some vicinity .
But then Proposition 7.3 implies thdtis notx-stable.

If « = «™0 and densityE) < «, then cardS(E)) < « (for there are at most™ = «
definition schemata for types ovEd, soT is x-stable. =

9. EXAMPLES

In this section we exhibit two examples. The first example is of a theory whigh is
stable but not superstable with respect to the meltrithe second example is of a theory
which is stable but not superstable with respeat.to

At this point we should remind the reader that we already know examples of theories
that are superstable but netstable with respect to the metri2, namely, any Banach
space theory which ig-stable with respect td (e.g., Hilbert spaced,; spaces, for 1<
p < o0) is superstable but nei-stable with respect t® (see [3]).

Some of the computations with positive bounded formulas involved in the examples of
this section are rather lengthy, and we have omitted them for the sake of clarity.

Example 1. A superstable, noto-stable theory: . Let H be an infinite dimensional
Hilbert space. For each € 2<%, find an infinite dimensional subspaéf of H,
such that
.« Hy=H;
+ Hs = Hs~0 + Hs~1;
. Hs-0 L Hg1.

For eacls € 2<“, we let

p(x) = distance fromto | J Hs,
(S<k

andH = (H, px | k < m).

Let Ty be the positive bounded theory of the structite Suppose thaE =
(E, gk | k < m) is a model ofT,. ThenE is a Hilbert space. Also, for eadh< m
and eacls € 2 there exists an infinite dimensional subsp&geof E, such that

. Eg =E;
+ Es = Es0+ Es~1;
« Es~0 1l Es~1;

and

or(x) = distance fronx to U Es.
L(s)<k

Thus, ifE; andE; are separable models ©f, anda € E;, b € E; have the same
quantifier-free type, there is an isomorphism frefonto E? carryinga to b. This
implies thatT,, admits quantifier elimination (see [2]).

LetnowT = Jy,-,, Tm. By the preceding argumen, is complete and admits
quantifier elimination. We show that is superstable but net-stable with respect
to the metriad.

Fix a modelE = (E, g« | k < w) of T, of density character. We prove that the
d-density character & (E) is max 250, « }.
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Fors e 2<¢, find a subspacEs of E as above. Let be a Xo-saturated extension
of E. For eacht € 2¢ there exists an infinite dimensional subspé&geof &, such
that

. Es C B¢, ifscCé;

. C= ZSEZ‘” Eg;

. Ee LE, if&#n.

For eacht € 2¢, takex: € E¢ \ E with ||x¢|| = 1. Then, if§ # n, thed-distance
between tpxe /E) and tx,/E) is V2. This shows that thd-density character of
Si(E) is at least Do.

If X,y € €\ Eandx, y € E; for somet € 2, then tgx/E) = tp(y/E). Hence,
for purposes of counting types ovEr we may assume thé; \ E is separable for
eacht € 2”. Let A; be a dense subset B \ E. Then, the set

{tp(c/E)|ce Y A}
Ee2w
is d-dense in the set of nonrealized types oderBut the above set has cardinality
max{ 2%, k¢ }. Thus, the set of nonrealized 1-types o#etand hence the set of all
1-types ovelE) has density character mg&'°, « }.
Example 2. A stable, not superstable theory:. LetH be an infinite dimensional Hilbert

space. For eache w=% let Hs be an infinite dimensional subspacetbfsuch that

. Hp=H;

« Hs = Zi <w Hsis

« Honi L Henj, ifi < .
For eacls € »=?, let

pk(X) = distance fronx to U Hs.
L(s)<k

LetH = (H, pk | k < m), and letT be the positive bounded theory Idf

LetE = (E, gk | k < w) be a model ofT of density charactet. ThenE is a
Hilbert space, and there exist cardinajs< « (k < w) with the following property.
For eachs € (ITk-,Ak)=® there exists an infinite dimensional subspageof E,
such that

. Eg=E;

. Es= Zmew Es~m;

« Es~k L Es~m, ifk <m;
and

ok (X) = distance fronx to U Es.
e(s)<k

Arguing as in the preceding example, we see thatitensity character d¥ (E)

is k™0, Thus,T is k-stable if and only ifc™0 = «.

10. APPENDIX. FORKING AND CLASSES

Recall from [3] that a positive bounded-formula ¢(X, y) is representedn a type
p € S(B) if there existd € B such thatp(x, b) € p, andalmost representeit p if every
approximation ofp is represented ip.

10.1. Definition. If pis atype, theclassof p, denoted dlp), is the set ol_-formulas that
are almost represented n

Proposition 10.2. Let A € E and p € S(E). The following conditions are equivalent



STABLE BANACH SPACE STRUCTURES, I 17

(1) pdoes not fork oveA.
(2) If g is an extension op| A over a model containing\, thencl(p) < cl(q).

Proof. (1) = (2): Let g be an extension o over a modeF containingA, and suppose
that ckp) £ cl(q). Take a formulap(X, y) in cl(p) \ cl(q) and findyr > ¢ such thaty is
not represented iq. Take nowy’ such thaty < ¢’ < .

Let C; be a realization op, and¢; be a realization of|. Find anA-automorphismf of
&, with f(C1) = Cp. Sincey’ is represented ip, there exist® € E such that

() = ¢'(C1,b), and
(i) = ¢'(C2, f(b)).
Sincey is not represented i, we haveF C neq v (Cp, €)); thus, by definition, neg/ (Cz, ¥)) €
Na(¥). Hence, by (i) above, i (b)/ AUG,) forks overA. By Symmetry, tpcz/A U f (b))
forks overA. But then, tgc1/ A U b) forks overA, which is impossible, sinck € E and
tp(€1/E) does not fork oveA.
(2) = (1): Letp(x) be an heir ofp over&. We claim thaip does not fork oveA. This
will prove thatp does not fork oveA.
Let F be a model containing. We have alp) < cl(p), sincep is the heir ofp. By (2),
we also have ¢€p) < cl(p|F). Hence, dp) < cl(p|F). SinceF is arbitrary,p does not
fork over A, by Proposition 3.5. =
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