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ABSTRACT. We study model theoretical stability for Banach spaces and structures based
on Banach spaces, e.g., Banach lattices orC∗-algebras. We prove that a theory is stable if
and only if the following condition is true in every modelE of the theory: If(ām) and(b̄n)

are bounded sequences inEk and El (respectively) andR : Ek × El → R is definable,
then there exist subsequences(āmi ) and(b̄n j ) such that

lim
i→∞

lim
j→∞

R(āmi , b̄n j ) = lim
j→∞

lim
i→∞

R(āmi , b̄n j ).

1. INTRODUCTION

A framework for the model theoretical analysis of various structures from functional
analysis was introduced in the monograph [6]. The class of structures under consideration
includes Banach spaces as well as further structures from functional analysis which are
based on Banach spaces e.g.,C∗-algebras. The model theoretical language of [6] provides
tools to prove new results for important classes of structures from analysis.

In this series of papers we use the general framework of [6] to develop the theory of
stable Banach space structures. Rich classes of Banach space are stable, e.g., the spaces
L p, for 1 ≤ p < ∞. In this, the first paper of the series, we introduce the basic concepts
of stability, and show Banach space theoretical counterparts of familiar facts from classical
stability theory, (e.g., a theory is stable if every type is definable). For this basic material
we follow the order of exposition of [10].

In Section 9, we prove the following result:

Theorem. A theory is stable if and only if the following condition is true in every modelE
of the theory: If(ām) and (b̄n) are bounded sequences inEk and El (respectively) and
R : Ek × El → R is definable, then there exist subsequences(āmi ) and(b̄n j ) such that

lim
i→∞

(
lim

j→∞
R(āmi , b̄n j )

) = lim
j→∞

(
lim

i→∞
R(āmi , b̄n j )

)
.

In particular, in a stable Banach space, the above condition holds for the real-valued
functionR(x, y) = ‖x + y‖. This fact imposes rather strong conditions on the geometry
of stable Banach spaces: every such space contains the sequence space`p, for some 1≤
p <∞, almost isometrically. See [9]. (See also the remarks concluding Section 9.)

In forthcoming papers, we will concentrate on deeper aspects of the theory, as well as
direct applications to functional analysis.

We assume that the reader is familiar with the basic machinery of [6]. In particular, we
assume familiarity with the notions of Banach space structure, positive bounded formula,
and approximate satisfaction|=A. The terms “formula”, “theory” and “type” are used
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as abbreviations of “positive bounded formula”, “positive bounded theory”, and “positive
bounded type”, respectively. Ifϕ andψ are positive bounded formulas, we writeϕ < ψ

to indicate thatψ is an approximation ofϕ.
The letterT denotes a fixed complete positive bounded theory over a countable lan-

guageL. All the models considered are models ofT . We assume that these models are
approximately elementary submodels of some large, saturated modelE. If ā ∈ E, ‖ā‖ is
taken as an abbreviation of max1≤i≤n ‖ai ‖. (In other words, we equip the finite powers of
E with an`∞-norm.) If A is a subset ofE andN ≥ 0, we denote the set of elements ofA
of norm≤ N byBN(A). WhenN = 1, we write simplyB(A). By theℵ0-saturation ofE,
we haveE |=A ϕ(ā) if and only if E |= ϕ(ā) for every positive bounded formulaϕ and
everyā ∈ E. If E |=A ϕ(ā), we write simply|=A ϕ(ā), omittingE. If A is a subset ofE,
we denote byQA the set of rational multiples ofA.

We consider only complete, positive bounded types which are consistent withT . The
norm of ann-type p, denoted‖p‖, is the norm of anyn-tuple realizingp. If A is a subset
of a modelE, we denote byL(A) the result of expanding the languageL with constants
and appropriate norm bounds for the elements ofA, andT(A) is the theory ofE in L(A).
The set ofn-types overA is denotedSn(A), andS(A) =⋃n<ω Sn(A).

2. UNIFORM STRUCTURES ON THESPACE OFTYPES

The space of types of a complete positive bounded theoryT is endowed with various
uniform topologies on it. Below are two of the most natural examples.

¦ The metricd. This is the result of “transferring” the norm topology from the models of
T ontoS(T). If p(x̄) andq(x̄) are types, we let

d(p,q) = inf{ ‖b̄− c̄‖ | E |= p(b̄),q(c̄) }.
It is easy to show thatd is a metric onSn(A). We extendd to all of S(T) by letting
d(p,q) = ∞ when p andq are types in different sets of variables or over different sets
of parameters.

Notice that if p(x̄) andq(x̄) are types, thend(p,q) = α if and only if for every
realizationc̄ of p there exists a realization̄c of q such that‖b̄− c̄‖ = α.
¦ The Banach-Mazur metricD. Suppose that the language contains no real-valued rela-

tions other than the norm, and that the only functions in addition to the vector space
operations are constants. Thus, theL-structures are of the form(E, ci )i∈I , whereE is
a Banach space and theci ’s are constants. Letε ≥ 0; a (1+ ε)-isomorphismbetween
two L-structures(E, ci )i∈I and(F, ci )i∈I is a linear isomorphismf : E→ F such that
f (ci ) = di for everyi ∈ I , and‖ f ‖, ‖ f −1‖ ≤ 1+ ε. If p(x̄) andq(x̄) are types, we let

D(p,q) = inf

{
1+ ε

∣∣∣∣ there is a(1+ ε)-isomorphism between
(E, b̄) and(E, c̄),andE |= p(b̄),q(c̄)

}
.

The functionD itself is not a metric, but log(D) is. Nonetheless, it is the functionD
that is referred to as theBanach-Mazur metric.

The concept of auniform structure on the space of typeswas introduced in [6] in order
to give a uniform treatment of topologies onS(T) such as those described above. We recall
the definition here.

2.1. Definition. A uniform structure on on the space of typesof T is a familyU of subsets
of S(T)× S(T), calledvicinities, such that

(1) U is a base for a Hausdorff uniform structure (in the standard topological sense. See,
for example, Chapter 6 of [8]) onS(T).
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(2) For every vicinityU there exists a set of pairs of formulasD(U ) such that
(i) If (ϕ, ϕ′) ∈ D(U ), thenϕ < ϕ′.

(ii) D(U ) definesU in the following sense: The pair(p(x̄),q(x̄)) is in U ∩ S(A)×
S(A) if and only if for every pair (ϕ(x̄, ȳ), ϕ′(x̄, ȳ)) ∈ D(U ) and everȳa ∈ QA,

ϕ(x̄, ā) ∈ p implies ϕ′(x̄, ā) ∈ q,

ϕ(x̄, ā) ∈ q implies ϕ′(x̄, ā) ∈ p.

(iii) There exists a vicinityV with the following property: If(ϕ, ϕ′) ∈ D(U ) and
ϕ′′ > ϕ′, there exists(ψ,ψ ′) ∈ D(V) such thatϕ < ψ andψ ′ < ϕ′′.

2.2. Examples.
(1) A uniform structure for the metricd. For δ ≥ 0, we let

Uδ = { (p,q) | d(p,q) ≤ δ }
and defineU as the family of all sets of the formUδ, whereδ ∈ Q+. For δ ∈ Q+, we
letD(Uδ) be the set of pairs(ϕ, ϕ′) such thatϕ(x̄, ȳ) is of the form

∀z̄(‖z̄‖ ≤ ε → σ(x̄ + z̄, ȳ)),

for ε > δ, andϕ′(x̄, ȳ) is of the form

∀z̄(‖z̄‖ ≤ ε − δ→ σ ′(x̄ + z̄, ȳ)),

with σ ′ > σ .
(2) A uniform structure for the Banach-Mazur metricD. For ε ≥ 0, we let

Uε = { (p,q) | D(p,q) ≤ 1+ ε }
and defineU as the family of all sets of the formUε , whereε ∈ Q+. Forε ∈ Q+, we
let D(Uε) be the set of pairs(ϕ, ϕ1+ε) such thatϕ(x̄, ȳ) is anL-formula andϕ1+ε is
the(1+ ε)-approximation ofϕ introduced in [4].

For more examples of uniform structures on the space of types, we refer the reader
to [6].

The following fact about uniform structures on the space of types was proved in [6].

Proposition 2.3. Let U be a uniform structure on the space of types ofT . SupposeA ⊆
B ⊆ E. Then,

(1) If m ≤ n, the restriction map fromSn(B) onto Sm(A) is uniformly continuous with
respect toU.

(2) If A is dense inB, the restriction map fromSn(B) onto Sn(A) is uniform homeomor-
phism with respect toU.

3. STABILITY

3.1. Definition. Let U be a uniform structure on types. Ifκ is an infinite cardinal, a the-
ory T is κ-stable with respect toU if for every setA ⊆ E of cardinalityκ and everyn < ω,
the density character ofSn(A) with respect to the uniform topology ofU|Sn(A) is≤ κ.

By Proposition 2.3-(2), the word “cardinality” in the preceding definition can be re-
placed by “density character”.

3.2. Examples.The most significant examples of stable theories known to us are (1)
and (2) below; both are due to C. W. Henson.

(1) If (X,B, µ) is a complete measure space, then the theory ofL p(µ) for 1 ≤ p <∞ is
ω-stable with respect tod. See [5]. (̀∞ is unstable. See Example (4) below.)
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(2) Let H be a Hilbert space and let(Fi | i < ω) be a countable family of bounded
operators onH . Then the theory of the structure( H, Fi | i < ω ) is ω-stable with
respect tod. See [5].

(3) If U is metrizable andκ is an infinite cardinal, thenω-stability with respect toU implies
κ-stability with respect toU.

(4) We shall see in Section 8 that every Banach space structure containing the Banach
spacec0 is unstable with respect toanyuniform structure.

(5) No theory can beω-stable with respect to the discrete metric: the number of types over
the empty set is at least 2ℵ0.

(6) If the topology induced byU2 is finer than the topology induced byU1 andT isκ-stable
with respect toU1, thenT is κ-stable with respect toU2.

In rest of this is section we study stability with respect to the Banach-Mazur metricD,
and compare it with stability with respect to the metricd. These results are not needed
elsewhere the paper.

We assume that the language contains no real-valued relation symbols in addition to
the norm, and that, except for the vector space operations, all the function symbols are
constant.

3.3. Definition. Let A ⊆ E. We say that two tuples(a1, . . . ,an) and(b1, . . . ,bn) have
the same linear dependencies overA if there is a linear isomorphism between the span of
A∪ {a1, . . . ,an } and the span ofA∪ {b1, . . . ,bn } which mapsai to bi , for i = 1, . . . ,n,
and fixingA pointwise.

If p ∈ Sn(A), the linear dependencies of ann-tuple realizingp are completely deter-
mined byp, i.e., any two realizations ofp have the same linear dependencies overA.

Proposition 3.4. If p,q ∈ Sn(A), the following conditions are equivalent.

(1) D(p,q) <∞;
(2) Any realization ofp and any realization ofq satisfy the same linear dependencies over

A;
(3) There exist a realization ofp and a realization ofq which satisfy the same linear

dependencies overA.

Proof. (1) ⇔ (2): Let ā realize p, andb̄ realizeq. Every linear isomorphism between
spanA∪ ā and spanA∪ b̄ is a(1+ ε)–isomorphism for someε ≥ 0, and can be extended
to a(1+ ε)-automorphism ofE.
(2)⇔ (3) follows from the remark preceding the statement of the proposition. a
Clearly, all nonzero 1-tuples have the same linear dependencies over the empty set.

Hence, by the preceding proposition, any two nonzero types over the empty set are within
a finite distance of each other. However, ifA \ {0} is nonempty, one can find 2ℵ0 many
types overA which are infinitely apart from each other: Ifa ∈ A\{0}, then, for any distinct
scalarsα andβ, the tuples(a, αa) and(a, βa) do not have the same linear dependencies.
We conclude the following result.

Proposition 3.5. No theory can beω-stable with respect to the Banach-Mazur metricD.

Nevertheless, it follows from Proposition 3.7 and the preceding list of examples that
various important theories areκ-stable with respect to the Banach-Mazur metric, for every
cardinalκ ≥ 2ℵ0

The following result, relating the metricsD andd, is proved in [6]
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3.6. Lemma(Perturbation Lemma for Types). Suppose thatA is finite, and letp be a type
over A. Then for everyε > 0 there existsδ > 0 with the following property. If

(1) d(p,q) < δ, and
(2) The realizations ofp andq satisfy the same linear dependencies overA,

thenD(p,q) < 1+ ε. Furthermore,δ depends only on the quantifier-free part ofp.

Proposition 3.7. If T is κ-stable with respect tod andκ ≥ 2ℵ0, thenT is κ-stable with
respect to the Banach-Mazur metric.

Proof. Suppose thatκ ≥ 2ℵ0 andT is κ-unstable with respect to the Banach-Mazur metric.
Then there exist a setA and a positive integern of cardinalityκ such that theD-density
character ofSn(A) is larger thanκ. Therefore, there is a subset{ pi | i < k+ } of Sn(A)
and ε > 0 such thatD(pi , pj ) > 1+ ε for i < j < κ+. Hence, for each pair(i, j )
with i < j < κ+ there exists a finite tuplēai, j ∈ A such thatD(pi |āi, j , pj |āi, j ) > ε for
i < j < κ+ By refining(pi ) if necessary, we may assume that there existsā ∈ A such that
āi, j = ā for i < j < κ+.

Now, there are at most 2ℵ0 linear dependencies inn variables. Sinceκ ≥ 2ℵ0, by
further refinement of(pi ) we may assume that fori < j < κ+ the realizations ofpi and
pj have the same linear dependencies. Fixi < κ+. By the perturbation lemma for types,
there existsδi > 0 such thatd( p̃i , p̃ j ) > δi for i < j < κ+. By refining(pi ) further if
necessary, we can assume that there existsδ > 0 such thatδi = δ, for i < κ+. Thus,
d( p̃i , p̃ j ) > δ for i < j < κ+. Hence,d-density character ofSn(ā) is larger thanκ andT
is κ-unstable with respect tod. a
Corollary 3.8. If T isω-stable with respect tod, thenT is 2ℵ0-stable with respect toD.

4. MORLEYIZATIONS OF TYPES

Let p(x̄) be a type overE, and letσ(x̄, y1, . . . , ym). We shall define am-ary real-valued
relationPσ : Em→ [0,∞] such that forā ∈ E,

σ(x̄, ā) ∈ p if and only if Pσ (ā) = 0.

The construction ofPσ is as follows. Take a set{ σr (x̄, ȳ) | r ∈ Q+ } of approximations
of σ such thatσr < σs if and only if r < s, andσr → σ asr → 0.

Define

Pσ (ā) = inf{ r ∈ Q+ | σr (x̄, ā) ∈ p }.
The perturbation lemma [6] assures thatPσ is uniformly continuous on every bounded
subset ofE. Furthermore, it gives a modulus of uniform continuity forPσ on each bounded
subset ofE. We denote byL(Pσ | σ ∈ L) the expansion of the languageL with predicates
for the real-valued relationsPσ (for σ(x̄, ȳ) ∈ L) and the moduli of uniform continuity
provided for them by the perturbation lemma.

We have the following chain of equivalences:

¦ σ(x̄, ā) ∈ p;
¦ σr (x̄, ā) ∈ p for everyσr in D;
¦ Pσ (ā) ≤ r for everyr ∈ Q+;
¦ Pσ (ā) = 0.

We call theL(Pσ | σ ∈ L)-structure(E,Pσ | σ ∈ L) the p-morleyizationof E.
For a family of types(pi )i∈I , we define the(pi )i∈I -morleyization ofE similarly: for

every L-formulaσ(x̄, ȳ) with `(ȳ) = m and everyi ∈ I we define am-ary real-valued
relationPiσ : Em→ [0,∞] such thatσ(x̄, ā) ∈ pi if and only ifPiσ (ā) = 0.
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If ϕ andψ are formulas withϕ < ψ , [ϕ,ψ) denotes the set{ σ | ϕ ≤ σ < ψ }. The
order topologyon the languageL is defined as follows. The neighborhoods of a formulaϕ

are the sets [ϕ,ψ), whereϕ < ψ . The following concept was introduced in [6]

4.1. Definition. A quasi-typeover A is a set of positive boundedL(A)-formulas whose
closure with respect to the order topology is a type.

Proposition 4.2. Let0(x̄) be a set of positive boundedL(A)-formulas such that

(1) 0 is consistent;
(2) For someN > 0, the formula‖x̄‖ ≤ N is in 0;
(3) For every positive boundedL(A)-formulaϕ(x̄), eitherϕ or neg(ϕ) is in 0.

Then0 is a quasi-type overA.

Proof. See [6]. a
Proposition 4.3. Let p(x̄) ∈ S(E). Suppose that(F,Pσ | σ ∈ L) is a model ofThA(E,Pσ ,a |
σ ∈ L ,a ∈ E), and define

pF (x̄) = { ϕ(x̄, b̄) | b̄ ∈ F, (F,Pσ | σ ∈ L) |=A Pϕ(b̄) ≤ 0 }.
ThenpF (x̄) is a quasi-type overF .

Proof. If ϕ(x̄, ȳ) is anL-formula,ψ > ϕ, andM > 0,

(E,Pσ | σ ∈ L)6|=A∃ȳ
(
‖ȳ‖ ≤ M ∧ Pϕ(ȳ) ≤ 0∧ Pneg(ψ)(ȳ) ≤ 0

)
.

Hence, for any pairϕ(x̄, ȳ) < ψ(x̄, ȳ) and anyb̄ ∈ F with `(b̄) = `(ȳ),
ϕ(x̄, b̄) ∧ neg(ψ(x̄, b̄)) /∈ pF (x̄),

so pF (x̄) is consistent.
Also, for someN > 0, the formula‖x̄‖ ≤ N is in p. Hence,

(E,Pσ | σ ∈ L) |=A P‖x̄‖≤N ≤ 0,

and‖x̄‖ ≤ N ∈ pF .
Finally, for every formulaϕ(x̄, ȳ),

(E,Pσ | σ ∈ L) |=A ∀ȳ
(
‖ȳ‖ ≤ M → Pϕ(ȳ) ≤ 0∨ Pneg(ϕ)(ȳ) ≤ 0

)
;

hence, ifb̄ ∈ F and`(b̄) = `(ȳ), we haveϕ(x̄, b̄) ∈ pF (x̄), or neg(ϕ(x̄, b̄)) ∈ pF (x̄).
Thus,pF (x̄) is a quasi-type, by Corollary 4.2. a

5. HEIRS

5.1. Definition.

(1) Let q(x̄) be a type overA, and letϕ(x̄, ȳ) be a positive bounded formula. We say
thatϕ is represented inq if there existsā ∈ A such thatϕ(x̄, ā) ∈ q. We say thatϕ is
almost represented inq if every approximation ofϕ is represented inq.

(2) If A ⊇ E, p(x̄) is a type overE andq(x̄) is an extension ofp over A, we say thatq is
anheir of p if every L(E)-formula that is represented inq is almost represented inp.

Proposition 5.2. Let p(x̄) ∈ S(E). Suppose that(F,Pσ | σ ∈ L) is a model ofThA(E,Pσ ,a |
σ ∈ L ,a ∈ E), and letpF be as in Proposition4.3. Then the closure ofpF (x̄) is an heir
of p(x̄).
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Proof. We proved in Proposition 4.3 that the closure ofpF is a type. Ifϕ(x̄, ȳ) is an
L(E)-formula that is represented in the closure ofpF (x̄), then

(F,Pσ | σ ∈ L) |=A ∃ȳ(‖ȳ‖ ≤ N ∧ Pϕ(ȳ) ≤ 0)

for someN > 0. But then,

(E,Pσ | σ ∈ L) |=A ∃ȳ(‖ȳ‖ ≤ N ∧ Pϕ(ȳ) ≤ 0),

and henceϕ is almost represented inp(x̄). a
5.3. Lemma. SupposeE ≺A F . Let p ∈ S(E) and letq1,q2 be heirs ofp over F . If
E′ ÂA E and p′ is an heir ofp over E′, there existE′′ ÂA E′, heirsr1, r2 of p′ over E′′,
and an embeddingf : F ≺A E′′ such thatf (q1) ⊆ r1 and f (q2) ⊆ r2.

Proof. Let b′ denote a new constant for eachb ∈ E′ \ E. Let

( F,Q1ϕ,Q2ϕ | ϕ ∈ L )

be the(q1,q2)-morleyization ofF . Every L(E)-formula which is represented inp′ is
almost represented inp, and hence almost represented inq1 andq2. Therefore, the theory

6 = ThA(F,Q1σ ,Q2σ ,b, | σ ∈ L ,b ∈ F)

∪{ Q1τ (ā, b̄
′) ≤ 0 | ā ∈ E, b̄ ∈ E′ \ E, σ (x̄, ā, b̄) ∈ p′ for someσ < τ }

∪{ Q2τ (ā, b̄
′) ≤ 0 | ā ∈ E, b̄ ∈ E′ \ E, σ (x̄, ā, b̄) ∈ p′ for someσ < τ }

is finitely consistent.
Let F̃ be the reduct of a model of6 to the languageL. Then the following conditions

hold:

(1) F̃ ÂA F ;
(2) There exists an extensionq̃1 of q1 over F such that everyL(E)-formula which repre-

sented inq̃1 is almost represented inq1;
(3) There exists an extensionq̃2 of q2 over F such that everyL(E)-formula which repre-

sented inq̃2 is almost represented inq2;
(4) There exists an embeddingg : E′ ≺A F̃ fixing E pointwise, such thatg(p′) ⊆ q̃1, q̃2.

Since tp(E′/E) = tp(g(E′)/E), there exists an automorphismh of the monster model such
thath = g−1 on g(E′). Define f = h|F , E′′ = f (F̃), r1 = f (q̃1), andr2 = f (q̃2). a

6. DEFINABLE TYPES

Recall that IfB is a subset of the monster model,B(B) denotes the set of elements ofB
of norm less than or equal to 1.

6.1. Definition. Let A ⊆ B . A type p(x̄) ∈ S(B) is calleddefinable overA if for every
pair of L-formulasϕ(x̄, ȳ) < ψ(x̄, ȳ) there exists a pair ofL(A)-formulas

dϕ,ψ1 (ȳ) < dϕ,ψ2 (ȳ)

such that for all̄a ∈ B(QB),

ϕ(x̄, ā) ∈ p(x̄) implies |= dϕ,ψ1 (ā)

|= dϕ,ψ2 (ā) implies ψ(x̄, ā) ∈ p.

The map(ϕ, ψ) 7→ (dϕ,ψ1 ,dϕ,ψ2 ) is called adefinition schemafor p over A. A type
p ∈ S(B) is definableif it is definable overB.
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If p ∈ S(E) andq is an extension ofp, any definition schema forq is a definition
schema forp. A definition schema forp need not be a definition schema forq; however,
Lemma 6.3 shows that ifq is an heir ofp, any sufficiently close “approximation” of a
definition schema forp will be a definition schema forq.

6.2. Lemma. Let A ⊆ B and p(x̄) ∈ S(B). Letε > 0, and suppose that for every pair of
L-formulasϕ(x̄, ȳ) < ψ(x̄, ȳ) there exists a pair ofL(A)-formulas

θ
ϕ,ψ

1 (ȳ) < θ
ϕ,ψ

2 (ȳ)

such that forā ∈ B1−ε(QB),

ϕ(x̄, ā) ∈ p(x̄) implies |=A θϕ,ψ1 (ā)

|=A θϕ,ψ2 (ā) implies ψ(x̄, ā) ∈ p.

Thenp is definable overA. Furthermore, if

ϕ̃(x̄, ȳ) = ϕ(x̄, (1− ε)ȳ), ψ̃(x̄, ȳ) = ψ(x̄, (1− ε)ȳ),
then

( ϕ(x̄, ȳ), ψ(x̄, ȳ) ) 7→ (dϕ̃,ψ̃1 (ȳ),dϕ̃,ψ̃2 (ȳ) )

is a definition schema forp.

The proof of Lemma 6.2 is a simple exercise.

6.3. Lemma. Suppose thatE ≺A F , p(x̄) ∈ S(E) andq is an heir ofp over F . Suppose
also that

( ϕ(x̄, ȳ), ψ(x̄, ȳ) ) 7→ ( dψ1 ϕ(ȳ), dψ2 ϕ(ȳ) )

is a definition schema forp. Letϕ′(x̄, ȳ) andθϕ,ψ(x̄, ȳ) be formulas such that

(1) ϕ(x̄, ȳ) < ϕ′(x̄, ȳ) < ψ(x̄, ȳ);

(2) dϕ
′,ψ

2 (ȳ) < θϕ,ψ(ȳ).

Then, ifε > 0 and

ϕ̃(x̄, ȳ) = ϕ(x̄, (1− ε)ȳ), ψ̃(x̄, ȳ) = ψ(x̄, (1− ε)ȳ),
the map

( ϕ(x̄, ȳ), ψ(x̄, ȳ) ) 7→ ( dϕ̃
′,ψ̃

1 (ȳ), θ ϕ̃
′,ψ̃ (ȳ) )

is a definition schema forq.

Proof. Fix L-formulasϕ(x̄, ȳ) < ψ(x̄, ȳ). Choose formulasϕ′ andθ such thatϕ < ϕ′ < ψ

anddϕ
′,ψ

2 < θ .

Step 1. If ‖ā‖ ≤ 1− ε andϕ(x̄, ā) ∈ q, then|= dϕ
′,ψ

1 (ā).

Proof of Step 1.Takedϕ
′,ψ

1 < γ < γ ′. It suffices to prove that the formula

‖ȳ‖ ≤ 1− ε ∧ ϕ(x̄, ȳ) ∧ neg(γ ′(ȳ))(*)

is not represented inq. If it were represented inq, it would be almost represented inp
(sinceq is an heir ofp), and since

‖ȳ‖ ≤ 1∧ ϕ′(x̄, ȳ) ∧ neg(γ (ȳ))

is an approximation of(∗), there would bēa ∈ E such that

‖ā‖ ≤ 1∧ ϕ′(x̄, ā) ∧ neg(γ (ā)) ∈ p(x̄).
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Sinceγ > dϕ
′,ψ

1 , this contradicts the fact thatϕ′(x̄, ā) ∈ p implies|=A dϕ
′,ψ

1 . a
Step 2. If ‖ā‖ ≤ 1− ε and|= θ2(ā), thenψ(x̄, ā) ∈ q

Proof of Step 2.Takeψ < ψ ′ < ψ ′′. It suffices to prove that the formula

‖ȳ‖ ≤ 1− ε ∧ θ(ȳ) ∧ neg(ψ ′′(x̄, ȳ))

is not represented inq. If it were, it would be almost represented inp, and there would be
ā ∈ E such that

‖ā‖ ≤ 1∧ dϕ
′,ψ

2 (ā) ∧ neg(ψ ′(x̄, ā)) ∈ p(x̄).

Sinceψ ′ > ψ , this contradicts the fact that|=A dϕ
′,ψ

2 (ā) impliesψ(x̄, ā) ∈ p. a
The lemma follows from Steps 1 and 2, and Lemma 6.2. a

6.4. Theorem. Let U be a uniform structure on the space of types. The following condi-
tions are equivalent for anyp(x̄) ∈ S(E):

(1) p is definable.
(2) For eachF ÂA E, p has a unique heir overF .
(3) There exists a cardinalκ such that wheneverF ÂA E anddensity(F) ≤ κ, the set of

heirs of p over F has density character≤ κ with respect to the uniform topology of
U|S(F).

Proof. (1)⇒ (2) : Let q be an heir ofp over F . Lemma 6.3 exhibits a definition schema
for q, given one forp. This determinesq.
(2)⇒ (3) is obvious.
(3) ⇒ (2): Let U be a uniform structure on types. Suppose, by way of contradiction,

that there exist a modelF ÂA E, heirsq1,q2 of p over F , and a vicinityU ∈ U such that
(q1,q2) /∈ U . Let κ be a cardinal withκ > density(E) and letγ be the least cardinal such
that 2γ > κ. Using Lemma 5.3 iteratively, one can construct a modelE′ ÂA E of density
character≤ κ, and a set{ pi | i < γ } of heirs of p over E′ such that(pi , pj ) /∈ U , for
i < j < γ .
(2)⇒ (1): Let (E,Pσ | σ ∈ L) be thep-morleyization ofE and let6(Pσ | σ ∈ L) be

its complete theory. We have seen that if

(F,PF
σ | σ ∈ L) |=A 6(Pσ | σ ∈ L),

thenp has an heir overF , namely,pF . The fact thatp has a unique heir over anyF ÂA E
means that6(Pσ | σ ∈ L) defines{Pσ | σ ∈ L } implicitly. But then, by the Beth De-
finability Theorem [6],6(Pσ | σ ∈ L) defines{Pσ | σ ∈ L } explicitly. Thus, for every
L-formulaσ(x̄, ȳ) and every rational numberr > 0 there exists aL-formula θ(ȳ) such
that

Pσ (ȳ) ≤ 0∧ ‖ȳ‖ ≤ 1 |=A θ(ȳ)(*)

Fix r > s. By the compactness theorem there existsθ ′ > θ such that

θ ′(ȳ) ∧ ‖ȳ‖ ≤ 1 |=A Pσ (ȳ) ≤ s.(**)

Sinces can be taken arbitrarily small,(∗) and(∗∗) prove thatp is definable. a
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7. STABILITY AND DEFINABILITY OF TYPES

A theory isstablewith respect toU if there exists an infinite cardinalκ such thatT is κ-
stable with respect toU. We shall prove that this condition is independent of the particular
uniform structureU. (Corollary 7.3.)

7.1. Lemma. Suppose thatE ≺A F , p ∈ S(E) andq is an extension ofp over F . If A is
a dense subset ofE and everyL(A)-formula that is represented inq is almost represented
in p, thenq is an heir ofp.

Proof. Let (E,Pσ | σ ∈ L) be thep-morleyization ofE, and let(F,Qσ | σ ∈ L) be the
q-morleyization ofF . Since everyL(A)-formula which is almost represented inq is also
almost represented inp,

(F, Qσ , a | σ ∈ L ,a ∈ A) ≡A (E, Pσ , a | σ ∈ L ,a ∈ A).

SinceA is dense inE, the perturbation lemma implies that

(F, Qσ , a | σ ∈ L ,a ∈ E) ≡A (E, Pσ , a | σ ∈ L , a ∈ E).

But then everyL(E)-formula that is almost represented inq is represented inp. Therefore,
everyL(E)-formula which is represented inq is almost represented inp, i.e.,q is an heir
of p. a
Corollary 7.2. LetU be a uniform structure on types. The following conditions are equiv-
alent:

(1) T is stable with respect toU.
(2) Every type over a model is definable.

Proof. (1) ⇒ (2): Suppose thatp ∈ S(E) is undefinable. Take a separableE0 ≺ F
such thatp is an heir ofp|E0. Lemma 6.3 implies thatp|E0 is undefinable. SinceE0
is separable,(3) ⇒ (1) of Theorem 6.4 implies that for every cardinalκ there exists
F ÂA E0 such that density(F) ≤ κ and the set of heirs ofp|E0 over F has density
character> κ with respect toU|S(F). Therefore,T is not stable with respect toU.
(2)⇒ (1): If κ be a cardinal such thatκℵ0 = κ andE be a model ofT of density char-

acterκ, there are at mostκ many types inS(E), since the number of definition schemata
for types overE cannot exceed the number of definition schemata, i.e.,(κℵ0)ℵ0 = κ. a

The condition of a type’s being definable does not make reference to any uniform struc-
ture. Hence, we can conclude the following:

Corollary 7.3. If U1 andU2 are uniform structures on types,T is stable with respect toU1
if and only ifT is stable with respect toU2.

Remark.SinceT ’s being stable with respect to some uniform structureU is independent
of U, hereafter we shall express this fact simply as “T is stable”.

8. STABILITY AND ORDER

8.1. Definition. Let E be a model. A positive formulaθ(x̄, ȳ) with `(x̄) = `(ȳ) defines
an order in E if there exist a bounded sequence(āk)k<ω in E and a formulaθ ′ > θ such
that

E |=A θ(āk, āl ), if k ≤ l ;
E |=A neg(θ ′(āk, āl )), if k > l .

In this case, we say that the pairθ, θ ′ ordersthe sequence(āk)k<ω.
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Example 8.2. Let (ek)k<ω be the standard basis for the Banach spaceco, and letak =
e0+ · · · + ek. Then

‖ek + al‖ =
{

2, if k ≤ l

1, if k > l .

Thus the pair of formulas

θ(x, y;u, v) : ‖y+ u‖ ≥ 2, θ ′(x, y;u, v) : ‖y+ u‖ ≥ 1

orders the sequence(ak a ek)k<ω in c0.

Remarks.(1) Let E be a Banach space,E∗ be its dual, and defineF = E ⊕∞ E∗. LetR
be the pairing function(x, ξ) 7→< x, ξ > on F . Then, ifr < s, the pair of formulas
R(x̄, ȳ) ≤ r , R(x̄, ȳ) ≤ s orders a sequence inF if and only if E is not reflex-
ive. This is theJames Conditionfor reflexivity, introduced by R. C. James [7]. (See
also Section 3.5 of [1].)

(2) If the sequence(āk)k<ω is ordered by a pair of formulas, then there existsδ > 0 such
that ‖ai − aj ‖ ≥ δ for i < j < ω. (Proof: Suppose that no suchδ exists. Then
(āk)k<ω has a Cauchy subsequence(āki )i<ω. Let a = lim i→∞ āki . Assume thatθ, θ ′
is a pair of formulas ordering(āk)k<ω. By the perturbation lemma, we must have
E |=A θ(ā, ā) andE |=A neg(θ ′(ā, ā)), which is, of course, impossible.)

(3) By (2), no formula can define an order in a finite-dimensional space.
(4) Suppose that the pairθ(x̄, ȳ), θ ′(x̄, ȳ) orders the sequence(āk)k<ω. Thenθ, θ ′ strictly

orders(āk)k<ω, i.e.,

E |=A ϕ(āk, āl ), if k < l ;
E |=A neg(ϕ′(āk, āl )), if k > l .

Suppose, conversely, that there exists a pairϕ, ϕ′ that strictly orders the sequence
(āk)k<ω as above. Letδ be as in (2), and takeε < δ. Then the pair of formulas

θ(x̄, ȳ) : ϕ(x̄, ȳ) ∨ ‖x̄ − ȳ‖ ≤ ε,
θ ′(x̄, ȳ) : ϕ′(x̄, ȳ) ∨ ‖x̄ − ȳ‖ ≤ δ

orders(āk)k<ω.
Thus, a sequence is ordered by a pair of formulas if and only if it is strictly ordered

by another pair of formulas.

8.3. Definition. Let E ⊆ A andq(x̄) ∈ S(A). We say thatq is finitely realized inE if for
every positive bounded formulaϕ(x̄, ā) ∈ q and everyψ > ϕ there exists̄u ∈ E such that
E |=A ψ(ū, ā).
8.4. Lemma. Assume that no formula defines an order inE. Then, ifp(x̄) ∈ S(E), every
heir of p is finitely realized inE.

Proof. Suppose that there existA ⊇ E and an heirq(x̄) of p(x̄) over A which is not
finitely realized inE. Then there exist positive bounded formulasϕ(ā, x̄) ∈ q(x̄) and
ψ > ϕ such that

for anyū ∈ E, 6|=Aψ(ā, ū).(*)

Let b̄ be a realization ofq(x̄). Then

|=A ϕ(ā, b̄).(**)

Fix rational numbersN > M ≥ ‖ā‖, ‖b̄‖. Fix also formulasϕ < ϕ0 < ϕ1 < · · · < ϕ′ <
ψ . We construct, by induction onk, sequences(āk)k<ω and(b̄k)k<ω in E such that
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(1) ‖āk‖, ‖b̄k‖ ≤ N;
(2) |=A ϕk(āk, b̄), for all k;
(3) |=A ϕk(āk, b̄l ), if k ≤ l ;
(4) |=A neg(ψ(āk, b̄k)), if k > l .

But then we will be done, because then, by (3) and (4), the pair of formulas

θ(x̄ a ȳ, x̄ a ȳ) : ϕ′(x̄, ȳ) θ ′(x̄ a ȳ, x̄ ∗ ȳ) : ψ(x̄, ȳ)

orders the sequence(ak a bk)k<ω. (Condition (2) is used only to carry out the induction.)
Assume that (1)–(4) hold for a positive integerk, in order to prove the corresponding

statements fork+ 1.
By (∗) there exists a positive bounded formulaρ > ψ such that

|=A
∧
i≤k

neg(ρ(ā, b̄i )).

By (2) of the induction hypothesis and(∗∗),
|=A ‖ā‖ ≤ M ∧ ‖b̄‖ ≤ M ∧ ϕ(ā, b̄) ∧

∧
i≤k

ϕi (āi , b̄) ∧
∧
i≤k

neg(ρ(ā, b̄i )).

Now takeψ < ψ ′ < λ. Sinceq = tp(b̄/A) is an heir ofp = tp(b̄/E), there exists̄a′ ∈ E
such that

|=A neg(‖ā′‖ ≤ N ∧ ‖b̄‖ ≤ M ∧ ϕ0(ā
′, b̄) ∧

∧
i≤k

ϕi (āi , b̄) ∧
∧
i≤n

neg(ψ ′(ā′, b̄i )),

and sinceE is a model, there exists̄b′ ∈ E such that

|=A ‖ā′‖ ≤ N ∧ ‖b̄′‖ ≤ N ∧ ϕi+1(ā
′, b̄′) ∧

∧
i≤k

ϕi+1(āi , b̄
′) ∧

∧
i≤k

neg(ψ ′(ā′, b̄i )).

Thus, (1)–(4) are satisfied with̄ak+1 = ā′ andb̄k+1 = b̄′. a

8.5. Lemma. The cardinality of set of types that are finitely realized in a modelE is
bounded by22card(E)

.

Proof. If θ(x1, . . . , xn, ā) is a positive bounded formula andE is a model, we denote by
θ(E, ā) the subset ofEn defined byθ(x̄, ā), i.e.,

θ(E, ā) = { (b1, . . . ,bn) ∈ E | |=A θ(b1, . . . ,bn, ā) }.
For eachn-typeq(x̄) that is finitely realized inE, let

E(q) = {ϕ′(E, ā) | ϕ(x̄, ā) ∈ q(x̄) andϕ < ϕ′ }.
Then (1)E(q) ⊆ P(En), (2) ∅ /∈ E(q), and (3)E(q) is closed under intersections. We
prove the lemma by showing that ifq(x̄) and r (x̄) are distinctn-types that are finitely
realized inE, thenE(q) 6= E(r ).

Suppose thatq(x̄) andr (x̄) are distinct. Then there existϕ(x̄, ā) andψ > ϕ such that
ϕ(x̄, ā) ∈ q and neg(ψ(x̄, ā)) ∈ r . Take formulasϕ < ϕ′ < ϕ′′ < ψ . Thenϕ′(E, ā) ∈ E(q)
and neg(ϕ′′(E, ā)) ∈ E(r ). But then,E(r ) 6= E(q): otherwise, by (3), we would have
∅ = ϕ′(E, ā) ∩ neg(ϕ′′(E, ā)) ∈ E(q), which is in contradiction with (2). a
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8.6. Definition. Let ϕ(x̄, ȳ), ψ(x̄, ȳ) be positive bounded formulas and letϕ′ > ϕ. Let
M ≥ 0. We defineR[ψ, ϕ, ϕ′,M ] to be the largest positive integerN with the following
property: there exist a modelE and sequences(ās)s∈2N (b̄t )t∈2<N in BM such that:

E |= ψ(ās, b̄t ), for s ∈ 2N, t ∈ 2<N;
E |= ϕ(ās, b̄s|i ), if s(i ) = 0;
E |= neg(ϕ′(ās, b̄s|i )), if s(i ) = 1.

If such a largestN does not exist, we writeR[ψ, ϕ, ϕ′,M ] = ∞.

8.7. Theorem. The following conditions are equivalent:

(1) T is stable.
(2) For anyψ(x̄, ȳ), anyϕ(x̄, ȳ) andϕ′ > ϕ, R[ψ, ϕ, ϕ′,M ] is finite.
(3) No formula can define an order in a model ofT .
(4) If p ∈ S(E), every heir ofp is finitely realized inE.

Proof. (1) ⇒ (2): Suppose thatR[ψ, ϕ, ϕ′,M ] is infinite. Then, by the compactness
theorem, for any infinite cardinalκ, the set

6κ = { ‖x̄s‖ ≤ M ∧ ‖ȳt‖ ≤ M }
∪{ψ(x̄s, ȳt ) | s ∈ 2κ , t ∈ 2<κ }
∪{ϕ(x̄s, ȳs|i ) | s ∈ 2κ , i < κ, s(i ) = 0}
∪{neg(ϕ′(x̄s, ȳs|i )) | s ∈ 2κ , i < κ, s(i ) = 1}

is consistent. Fix an infinite cardinalλ, in order to prove thatT is λ-unstable. Takeκ
minimal with the property 2κ > λ. Suppose that(b̄s)s∈2κ and(āt )t∈2<κ realize6κ , and
let A =⋃{at | t ∈ 2<κ }. Then card(A) ≤ λ and tp(cs/A) 6= tp(cs′/A) for s 6= s′ in 2κ .
ThusT is not stable with respect to the discrete uniform structure.
(2) ⇒ (3): Suppose that the pairθ, θ ′ orders the bounded sequence(āk)k<ω in E.

Let M > 0 be a bound for this sequence. It is easy to see thatā0, . . . ,a2k witness the fact
that R[‖x̄‖ ≤ M, θ(x̄, ȳ), θ ′(x̄, ȳ),M ] ≥ k.
(3)⇒ (4) is Lemma 8.4.
(4) ⇒ (1): Let p ∈ S(E). Lemma 8.5 gives a uniform bound for the number of

extensions ofp (over anyA ⊇ E) that are finitely realized inE. Hence, under the assump-
tion (4), the number of heirs ofp over any extension ofE is uniformly bounded. But then
p is definable by Theorem 6.4. Thus,T is stable by Corollary 7.2. a

Remark.Stability is not preserved under distortion of the norm, even by small amounts.
For ε > 0, define a new norm‖ ‖ε on`2 as follows. Forx = (xi )i∈ω in `2, let

‖x‖ε = ‖x‖ + ε sup{ |x2i + x2 j−1| | i < j < ω }
Then, ifek is thek-th unit vector, we have

‖e2k + e2l−1‖ε =
{√

2+ 2ε, if k < l√
2+ ε, if k > l .

Thus, `2 with the norm‖ ‖ε is not stable, by Theorem 8.7. (This example was taken
from [2], where the credit is given to B. Bollobás. A similar example is found in [13].)
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9. STABILITY AND ITERATED LIMITS

Let E be a Banach space structure and letN > 0. Recall from [6] that anm-ary
real-valued relationonBN(E) is a functionR : Bm

N(E)→ [−∞,∞] which is uniformly
continuous onBN(E).

The concept ofdefinable real-valued relationwas also introduced in [6]:
An m-ary real-valued relationR on BN(E) is definableif for every pair of rational

numbersr < s there exists a pair of positive boundedθ r,s
1 (x1 . . . xm) < θ

r,s
2 (x1 . . . xm)

such that for everȳa ∈ BN(E),

R(ā) ≤ r implies |= θ r,s
1 (ā),

|= θ r,s
2 (ā) implies R(ā) ≤ s.

Let E be a Banach space structure and letR be a real-valued relation onBN(E). A
bounded sequence(bn)n<ω in E is calledR-approximatingif the limit limn→∞R(b̄n, x̄)
exists for everyx ∈ BN(E). If E is a separable structure andR is a real-valued relation on
BN(E), then every bounded sequence inBN(E) has anR-approximating subsequence.

9.1. Theorem. The following conditions are equivalent.

(1) T stable.
(2) If E is a separable model ofT ,R(x̄, ȳ) is a definable real-valued relation onBN(E),

and(b̄m) and(c̄n) are approximating sequences inBN(E), then the double limits

lim
m

(
lim

n
R(b̄m, c̄n)

)
, lim

n

(
lim
m
R(b̄m, c̄n)

)
exist and are equal.

(3) If E is a model ofT ,R(x̄, ȳ) is a definable real-valued relationBN(E), and(b̄m) and
(c̄n) are approximating sequences inBN(E), then

lim
m

(
lim

n
R(b̄m, c̄n)

) = lim
n

(
lim
m
R(b̄m, c̄n)

)
,

where the equality means that if the limits exist, they are equal.

Proof. The equivalence between (2) and (3) is clear. We prove the equivalence between
(1) and (2).
(1)⇒ (2): Suppose that condition (2) fails for a real-valued relationR(x̄, ȳ) onBN(E)

approximating sequences(b̄m) and(c̄n). Then, either

liminf
m

(
lim

n
R(b̄m, c̄n)

)
< limsup

n

(
lim
m
R(b̄m, c̄n)

)
,

or

liminf
n

(
lim
m
R(b̄m, c̄n)

)
< limsup

m

(
lim

n
R(b̄m, c̄n)

)
.

Assume the former case (the latter is, of course, symmetric). By extracting subsequences,
we may assume that both limits

lim
m

(
lim

n
R(b̄m, c̄n)

)
, lim

n

(
lim
m
R(b̄m, c̄n)

)
exist. Then

l = lim
m

(
lim

n
R(b̄m, c̄n)

)
< lim

n

(
lim
m
R(b̄m, c̄n)

) = L .(*)
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Take rational numbersr ands such thatl < r < s < L. We will use(∗∗) to find
subsequences(b̄ni ) and(c̄n j ) of (c̄n) such that

R(b̄ni , c̄n j ) < r, for i < j ;
R(b̄ni , c̄n j ) > s, for i > j .

SinceR is definable, this will prove thatT has an order and is is therefore unstable by
Theorem 8.7. By(∗), there existm1 andn1 such that

(i) limnR(b̄m, c̄n) < r , for m≥ m1;
(ii) lim mR(b̄m, c̄n) > s, for n ≥ n1.

Suppose thatm1 < · · · < mk andn1 < · · · < nk have been found such that

R(b̄mi , c̄n j ) < r, for 1≤ i < j ≤ k;
R(b̄mi , c̄n j ) > s, for 1≤ j < i ≤ k.

Then we can findmk+1 andnk+1 such that

R(b̄mi , c̄nk+1) < r, for 1≤ i ≤ k (by (ii));

R(b̄mk+1, c̄n j ) > s, for 1≤ j ≤ k. (by (i)).

(2) ⇒ (1): Suppose thatT is not stable. Then there exist a modelE of T , a number
N > 0, and a pair of formulasθ < θ ′ which orders a sequence(ān) in BN i.e.,

E |=A θ(ām, ān), if m≤ n;
E |=A neg(θ ′(ām, ān)), if m> n.

By the Löwenheim-Skolem Theorem, we can assume thatE is separable.
Take a set{ θr |, r ∈ Q+ } of approximations ofθ such thatθr < θs if and only if r < s,

andθr → θ asr → 0. Define

R(ā, b̄) = inf{ r ∈ Q+ | E |= θr (ā, b̄) ∈ p }.
The real-valued relationR is obviously definable. However, there existsr > 0 such that

R(ām, ān) ≤ 0 if m≤ n;
R(ām, ān) ≥ r if m> n.

Thus, if the limits of condition (2) exist, they cannot be equal. a

The real-valued functions on Banach spaces which satisfy condition (3) of Theorem 9.1
were studied and characterized by Y. Raynaud in [12] and [11], where these functions are
called “stable”. This terminology was motivated by the class Banach spaces introduced
by J.-L. Krivine and B. Maurey in [9]. In this famous paper, the authors calledstable
the Banach spaces that satisfy condition (3) of Theorem 9.1 for the real-valued function
R(x, y) = ‖x+ y‖. This is, of course, a definable real-valued relation, so every stable Ba-
nach space is Krivine-Maurey stable. The main result of [9] is that every Krivine-Maurey
stable Banach space contains the space`p, for some 1≤ p < ∞, almost isometrically.
The problem of what Banach spaces contain copies of the classical sequence spaces has
been central in functional analysis for several decades. The book [3] contains a fairly recent
account of the body of work that has evolved around this question.
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J. Math., 44:33–52, 1983.
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