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Abstract. We show that a formula ϕ(x, y) is stable if and only if ϕ is the

pairing map on the unit ball of E × E∗, where E is a reflexive Banach space.
The result remains true if the formula ϕ is replaced by a set of formulas p(x̄, ȳ).

1. Introduction

In areas of mathematics where the object of study is a class of mathematical
structures, one wishes to classify the structures in the class by drawing dividing lines
between the simpler and the more complex structures of the class. The purpose of
this paper is to point out a rather striking analogy between classification programs
in two fields of mathematics which one does not normally regard as being closely
related: model theory and Banach space theory.

In model theory, a clear dividing line is recognized between two kinds of models:
stable and unstable models. A natural measure of the complexity of a model is
given by its space of types, and a stable model is one whose space of types is not
much larger than the model itself.

A similar distinction exists in Banach space geometry between reflexive and
nonreflexive spaces. A Banach space is reflexive if it equals its double dual. An
equivalent formulation is that Banach space is reflexive if and only if its unit ball
is weakly compact. Intuitively, this can be taken to mean that the unit ball of dual
of the space is not much larger than the unit ball of the space itself.

In 1964, R. C. James proved the following criterion for reflexivity [7].

Theorem (James Condition for Reflexivity). The following conditions are equiva-
lent for a Banach space E.

(1) E is not reflexive;
(2) For every θ ∈ R with 0 < θ < 1 there exists a sequence (am) with ‖am‖ = 1

for every m and a sequence (fn) of linear functionals with ‖fn‖ = 1 for
every n, such that

fn(am) =

{
0 if m < n

θ if m ≥ n.

Such a characterization must capture the attention of a model theorist, for it
bears striking resemblance to the most familiar characterization of model theoretical
stability, due to S. Shelah [12]: a model M is unstable if and only if there exists a
formula ϕ(x̄, ȳ) and sequences (ām) and (b̄m) such that

M |= ϕ(ām, b̄n) if and only if m ≤ n.
The formula ϕ is said to have the order property.
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During the 1970’s, further classifying properties were identified, independently
and in a parallel manner, in Banach space theory and in model theory. (For short
essays on each of these programs, see [6] and [2]). Here we concentrate only on
stability and reflexivity.

The similarity between (1) and (2) did not go unnoticed. In the early 1980’s,
J. L. Krivine and B. Maurey introduced the notion of stable Banach space in [9],
and proved that every stable Banach space contains some `p almost isometrically,
generalizing a result of D. Aldous [1] about subspaces of L1. A key fact in the
Krivine-Maurey proof was noticing the analogy between the role played by random
measures in Aldous’ proof and that played by types in model theoretical stability.

Stable Banach spaces have now become objects of intense study.
Every occurrence of (2) is a particular case of (1): if E is nonreflexive, the

formula

ϕ(x, y) : “x ∈ BE and y ∈ BE∗ and y(x) = 0”

(where BE and BE∗ denote the unit balls of E and E∗ respectively) has the order
property in an appropriate structure.

In this paper we show the converse. Let us identify formulas with {0, 1}-valued
functions.

Theorem. Suppose that M is a model and ϕ(x, y) is a formula which does not
have the order property on M . Then there exists a reflexive Banach space E and a
map (u, v) : M ×M → BE ×BE∗ such that the diagram

M ×M
(u,v) //

ϕ
$$I

II
II

II
II

BE ×BE∗

Evaluation mapyysss
sss

sss
s

[0, 1]

commutes.

The theorem is also true, and the proof is the same, if the formula ϕ(x, y) above
is replaced by a set of formulas p(x̄, ȳ).

This result is actually a simple consequence of a lemma of Y. Raynaud [11]
(Proposition 1.1) which comes from his thesis [10]. The lemma in question is a
generalization of Theorem II.1 of [9], where only separable spaces are considered,
to nonseparable spaces.

The connection of the Krivine-Maurey-Raynaud result with model theoretical
stability is in fact simple, but we do not believe that it is known to the model
theory community. Here we present the complete proof. The presentation should
be accessible to a reader who has had a basic course in functional analysis. No
knowledge of model theory will be assumed, but the reader familiar with model
theory will recognize several connections.

2. Stable Formulas and Stable Functions

We identify formulas with {0, 1}-valued functions defined on models. Thus, a
formula ϕ : M ×M → {0, 1} has the order property if there exist sequences (am)
and (bn) in M such that

ϕ(am, bn) = 1 if and only if m ≤ n.



STABLE MODELS AND REFLEXIVE BANACH SPACES 3

Definition 2.1. We will say that a formula ϕ(x, y) unstable if either ϕ or ¬ϕ has
the order property. We will call ϕ stable if ϕ is not unstable.

Now we recall the notion of convergence relative to ultrafilters. Let X be a
topological space and let (ai)i∈I be an indexed family in X. If a is a limit point in
X and U is an ultrafilter on I, we write

(1) lim
i,U

ai = a

if for every neighborhood O of a there exists U ∈ U such that ai ∈ O for every
i ∈ U . If A is a subset of X, then a ∈ Ā if and only if here exists (ai)i∈I in A and
an ultrafilter U on I such that (1) holds. The space X is compact if and only if
lim
i,U

ai exists for every family (ai)i∈I in X. In particular, every bounded family of

real numbers has a limit with respect to any ultrafilter.

Proposition 2.2. Let M be a model and let ϕ(x, y) be a formula on M . The
following conditions are equivalent.

(1) ϕ is stable on M ;
(2) If (am) and (bn) are sequences in M and U, V are ultrafilters on N, we have

lim
m,U

lim
n,V

ϕ(am, bn) = lim
n,V

lim
m,U

ϕ(am, bn).

Proof. (1)⇒ (2) is trivial. (2)⇒ (1) follows from Proposition 2.4 below. a

The preceding result motivates the following definition.

Definition 2.3. We will say that a bounded function ϕ : A×B → R is stable if the
following condition holds. Whenever (am) is a sequence in A and (bn) is a sequence
in B, and U,V are ultrafilters on N,

lim
m,U

lim
n,V

ϕ(am, bn) = lim
n,V

lim
m,U

ϕ(am, bn).

The following proposition shows that the sequences (am) and (bn) in the preced-
ing definition can be replaced by arbitrary families.

Proposition 2.4. Let ϕ : A×B → [0, 1]. Let (ai)i∈I be a family in A and (bj)j∈J
be a family in B. Suppose that

lim
i,U

lim
j,V

ϕ(ai, bj) = α, lim
j,V

lim
i,U

ϕ(ai, bj) = β.

then there exist sequences (aim) and (bjn) such that

lim
m<n
m→∞

ϕ(aim , bjn) = α, lim
n<m
n→∞

ϕ(aim , bjn) = β.

Proof. By definition, for every ε > 0 there exist Uε ∈ U and Vε ∈ V such that

i ∈ Uε implies | lim
j,V

ϕ(ai, bj)− α| ≤ ε,

j ∈ Vε implies | lim
i,U

ϕ(ai, bj)− β| ≤ ε.

Also, for every î ∈ I, every ĵ ∈ J and every ε > 0 there exist V îε ∈ V and U ĵε ∈ U

such that

j ∈ V îε implies |ϕ(aî, bj)− lim
j,V

ϕ(aî, bj)| ≤ ε,

i ∈ U ĵε implies |ϕ(ai, bĵ)− lim
i,U

ϕ(ai, bĵ)| ≤ ε.
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To construct the desired subsequences, take i0, i1 < . . . and j0 < j1 < . . . such
that

i0 ∈ U1

j0 ∈ V1 ∩ V i01

i1 ∈ U1/2 ∩ V j01/2

j1 ∈ V1/2 ∩ V i01/2 ∩ V
i1
1/2

...

iN ∈ U1/2N ∩
⋂
k<N

U jk
1/2N

jN ∈ V1/2N ∩
⋂
k≤N

V ik
1/2N .

It is easy to see that

m < n implies |ϕ(aim , bjn)− α| ≤ 1/2m−1,

n < m implies |ϕ(aim , bjn)− β| ≤ 1/2n−1.

a

Definition 2.5. Let ϕ : A × B → [0, 1]. If a ∈ A, the left ϕ-type of a, denoted
ltpϕ(a) is the function y 7→ ϕ(a, y). Similarly, if b ∈ B, the right ϕ-type of b,
denoted rtpϕ(b) is the function x 7→ ϕ(x, b).

The space of left ϕ-types, denoted LS(ϕ), is the closure of

{ ltpϕ(a) | a ∈ A }

in [0, 1]B with respect to the product topology. The space RS(ϕ) of right ϕ-types
is the closure of

{ rtpϕ(b) | b ∈ B }

in [0, 1]A. The spaces LS(ϕ) and RS(ϕ) are, of course, compact.

Proposition 2.6. The following conditions are equivalent for any bounded function
ϕ : A×B → [0, 1].

(1) ϕ is stable;
(2) There is a separately continuous function ϕ̂ : LS(ϕ) × RS(ϕ) → [0, 1] such

that

ϕ̂(ltpϕ(a), rtpϕ(b)) = ϕ(a, b)

for (a, b) ∈ A×B.

Condition (2) can be represented schematically by the following commutative
diagram.

LS(ϕ)× RS(ϕ)
ϕ̂ // [0, 1]

A×B

(ltpϕ,rtpϕ)

OO

ϕ

88ppppppppppp

(ϕ stable =⇒ ϕ̂ separately continuous)
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Proof. (1)⇒ (2): Take types p ∈ LS(ϕ) and q ∈ RS(ϕ).
Then there exists families (ai)i∈I in A and (bj)j∈J in B, and ultrafilters U on I

and V on J such that

p = lim
i,U

ltpϕ(ai), q = lim
j,V

rtpϕ(bj).

By Proposition 2.4,

lim
i,U

lim
j,V

ϕ(ai, bj) = lim
j,V

lim
i,U

ϕ(ai, bj).

Define ϕ̂(p, q) as the above common value. If we show that this definition is inde-
pendent of the choice of (ai), (bj) and U, V, the above equality will prove that ϕ̂ is
separately continuous.

Suppose that

p = lim
i,U

ltpϕ(ai) = lim
i,U′

ltpϕ(a′i), q = lim
j,V

rtpϕ(bj) = lim
j,V′

rtpϕ(b′j).

Then,

lim
j,V

ϕ(x, bj) = q(x) = lim
j,V′

ϕ(x, b′j) , for every x ∈ A,

lim
i,U

ϕ(ai, y) = p(y) = lim
i,U′

ϕ(a′i, y), for every y ∈ B.

Therefore,

lim
i,U

lim
j,V

ϕ(ai, bj) = lim
i,U

lim
j,V′

ϕ(ai, b
′
j) = lim

j,V′
lim
i,U

ϕ(ai, b
′
j) = lim

j,V′
lim
i,U′

ϕ(a′i, b
′
j).

(2)⇒ (1): Take sequences (an) in A and (bj) in B, and ultrafilters U and V on
N. Let

p = lim
i,U

ltpϕ(am), q = lim
n,V

rtpϕ(bn).

Then (p, q) ∈ LS(ϕ)× RS(ϕ) and

lim
m,U

lim
n,V

ϕ(am, bn) = ϕ̂(p, q) = lim
n,V

lim
mU

ϕ(am, bn).

a

In Section 3, we will use the following lemma from real analysis. The proof is
taken from [9].

Lemma 2.7. Every separately continuous function real-valued function on a prod-
uct of compact metrizable spaces is a pointwise limit of a sequence of continuous
functions.

Proof. Let f : K ×L→ R be a separately continuous function, where K and L are
compact metrizable spaces. We construct a sequence (fn) of continuous functions
which converges to f pointwise. Let d be a metric compatible with the topology of
K. For n ∈ N and a ∈ K, define a function una on K by

una(x) =

{
1
n − d(x, a) if d(x, a) ≤ 1

n

0 otherwise.
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For each n ∈ N, fix a finite sequence (ani )i∈I(n) in K such that every x ∈ K is
within 1/n of some ani . Define a function vni on K by

vni (x) =
unani (x)∑

j∈I(n)

unanj
(x)

.

Then, vni is continuous, |via| ≤ 1, and
∑
i∈I(n) v

n
i = 1. Now define fn on K × L by

fn(x, y) =
∑
i∈I(n)

vni (x)f(ani , y).

We now show that (fn) converges to f pointwise. Fix (x, y) ∈ K × L. For each
n ∈ N, find i(x, n) ∈ In such that d(x, ai(x,n)) ≤ 1/n. Take N ∈ N such that

|f(x, y)− f(ai(x,n), y)| ≤ ε, for n ≥ 1.

Then, for n ≥ 1, we have

|f(x, y)− fn(x, y)| =

∣∣∣∣∣∣
∑
i∈I(n)

f(x, y)− f(ani , y)

∣∣∣∣∣∣ vni (x)

≤
∑
i∈I(n)

|f(x, y)− f(ani , y)|vni (x)

≤ |f(x, y)− f(ai(x,n), y)|vni (x) ≤ ε.
a

3. Linearization of Stable Functions

Let E be a Banach space and let E∗ be its dual. If x ∈ E and y ∈ E∗, it is
customary to write 〈x, y〉 for y(x). The weak topology on E is the smallest topology
on E for which the all the maps x 7→ 〈x, y〉 are continuous. In other words, if
(xi)i∈I is a family in E and U is an ultrafilter on I, we have x = limi,U xi in the
weak topology if and only if 〈x, y〉 = limi,U 〈xi, y〉 for every y ∈ E∗. The weak*
topology on E∗ is the smallest topology on E∗ for which all the maps y 7→ 〈x, y〉
are continuous. Thus, (yi)i∈I is a family in E∗ and U is an ultrafilter on I, we have
y = limi,U yi in the weak* topology if and only if 〈x, y〉 = limi,U 〈xi, y〉 for every
x ∈ E. Alaoglu’s theorem states that the unit ball of E∗ is weak*-compact. The
weak and weak* topologies are denoted σ(E,E∗) and σ(E∗, E), respectively.

Every x ∈ E defines naturally a linear functional x̃ on E∗, namely, 〈y, x̃〉 = 〈x, y〉,
for y ∈ E∗. The map x 7→ x̃ is an isometric embedding of E into E∗∗, and is called
the canonical embedding We say that E is reflexive if the canonical embedding is
surjective. In general, the canonical embedding is not surjective and E∗∗ is larger
than E. However, the following is always true.

Fact 3.1. The unit ball of E is σ(E∗∗, E∗)-dense in the unit ball of E∗∗.

The simplest example of a nonreflexive space is the space c0 of all the zero-
convergent sequences with the supremum norm. The double dual of c0 is `∞, the
space of all bounded sequences with the supremum norm. We now describe the
dual of `∞.

In general, for a set X let `∞(X) the set of all bounded real-valued functions
on X. `∞(X) with the supremum norm is a Banach space. The dual of `∞ is the
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space M(X) of all finitely additive set functions (or measures) of bounded variation,
which we describe briefly below.

A finitely additive set function on X is a function µ : P(X)→ R such that

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai) = µ(X), for Ai pairwise disjoint.

If µ is such a function, the variation V (µ) of µ is defined

V (µ) = sup {
n∑
i=1

|µ(Ai)| |
n⋃
i=1

Ai, Ai pairwise disjoint }.

We say that µ is of bounded variation if V (µ) is finite.
We denote by M(X) the space of all finitely additive functions of bounded vari-

ation on X with addition and scalar multiplication defined in the natural way, and
the norm given by V . The space M(X) is the dual of `∞(X). For a proof, see [8].
If f ∈ `∞(X) and µ ∈M(X), 〈f, µ〉 is also written∫

X

f dµ.

For each x ∈ X, let δx be the element of M(X) defined by

δx(A) =

{
1 if x ∈ A
0 if x /∈ A.

δx is called the Dirac measure concentrated at x. If f ∈ `∞(X),∫
X

f dδx = f(x).

If (ξi)i∈I is a family of nonnegative real numbers, the sum
∑
i∈I ξi of (ξi)i∈I is

defined as the supremum of all finite sums
∑n
k=1 ξik , where i1, . . . , ik ∈ I. Notice

that if
∑
i∈I ξi is finite, then (ξi)i∈I must have countable support.

If X is any set, the Banach space `1(X) is defined as follows. The elements of
X are the functions f : X → R such that

∑
x∈X |f(x)| is finite. If f ∈ `1(X), the

norm of f is given by the above sum. The dual of `1(X) is `∞(X). The canonical
embedding of `1(X) in `∞(X)∗ = M(X) is given by

f 7→
∑
x∈X

f(x)δx.

Notation. The unit ball of a Banach space E will be denoted BE .

Proposition 3.2. Let ϕ : A×B → [0, 1] be a stable function. Then,

(1) For every µ ∈ `∞(A)∗ and every ν ∈ `∞(B)∗, we have∫∫
ϕ(x, y) dµ(x) dν(y) =

∫∫
ϕ(x, y) dν(y) dµ(x).

(2) If F (µ, ν) denotes the above common value, then the function F is weakly*-
continuous on `∞(A)∗ × `∞(B)∗.
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Proof. First, we notice that the equality in (1) holds for µ ∈ `1(A) and every
ν ∈ `1(B). Indeed, if µ =

∑∞
i=1 ξiδai and ν =

∑∞
j=1 ηjδbj , we have

∫∫
ϕ(x, y) dµ(x) dν(y) =

∑
i,j∈N

ξiηjϕ(ai, bj) =

∫∫
ϕ(x, y) dν(y) dµ(x).

Define F : `1(A) × `1(B) → R by letting F (µ, ν) be the above common value.
We now wish to extend F to `∞(A)∗ × `∞(B)∗.

Claim. The restriction of F to B`1(A) ×B`1(B) is stable.

Proof of the claim. Let (µm) be a sequence in B`1(A) and let (νn) be a sequence in
B`1(B). Let

S =
⋃
m

supp(µm), T =
⋃
n

supp(νn).

Then S and T are countable. We now apply Proposition 2.6 to the restriction
ϕ|S × T . Let LS(ϕ|S × T ) and RS(ϕ|S × T ) be spaces of left and right ϕ-types,
respectively (see Definition 2.5). These spaces are compact and metrizable, so by
Proposition 2.6, there exists a separately continuous function ϕ̂ : LSϕ|S×T×RSϕ|S×T
which “extends” ϕ in the sense that for (a, b) ∈ S × T ,

ϕ̂( ltpϕ|S×T (a), rtpϕ|S×T (b) ) = ϕ(a, b).

By Lemma 2.7, ϕ̂ is a Borel function. This allows us to define a function F̂ as
follows. If µ is a measure on LSϕ|S×T and ν is a measure on RSϕ|S×T ,

F̂ (µ, ν) =

∫∫
LSϕ|S×T×RSϕ|S×T

ϕ̂(p, q) dµ(p) dν(q).

Now, F̂ “extends” F in the sense that if

µ =

∞∑
i=1

ξiδai ∈ `1(A) ν =

∞∑
j=1

ηjδbj ∈ `1(B),

and we let

µ̂ =

∞∑
i=1

ξiδltpϕ|S×T (ai), ν̂ =

∞∑
j=1

ηjδrtpϕ|S×T (bj),

we get

F̂ (µ̂, ν̂) =
∑
i,j∈N

ξiηjϕ(ai, bj) = F (µ, ν).

By Fubini’s theorem,

F̂ (µ, ν) =

∫
LSϕ|S×T

∫
RSϕ|S×T

ϕ̂(p, q) dν(q) dµ(p)(*)

=

∫
RSϕ|S×T

∫
LSϕ|S×T

ϕ̂(p, q) dµ(p) dν(q).

and F̂ is separately weakly*-continuous.
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Take now measures µ and ν such that

µ = lim
m
µ̂m, in σ( `∞(LTϕ|S×T )∗, `∞(LTϕ|S×T ) );

ν = lim
n
ν̂n, in σ( `∞(RTϕ|S×T )∗, `∞(RTϕ|S×T ) ).

Then, by (∗),

lim
m,U

lim
n,V

F (µm, νn) = lim
m,U

lim
n,V

F̂ (µ̂m, ν̂n) = F̂ (µ, ν) = lim
n,V

lim
m,U

F̂ (µ̂m, ν̂n) = lim
n,V

lim
m,U

F (µm, νn).

Since (µm) and (νn) are arbitrary, the claim is proved. a

Now we use Fact 3.1 and the previous claim to extend F to `∞(A)∗ × `∞(B)∗.
Take µ ∈ B`∞(A)∗ and ν ∈ B`∞(B)∗ . Take families (µi)i∈I in B`1(A) and (νj)j∈J in
B`1(B), and ultrafilters U on I and V on J such that

µ = lim
i,U

µi, in σ(`∞(A)∗, `∞(A));

ν = lim
j,V

νj , in σ(`∞(B)∗, `∞(B)).

Then, ∫∫
ϕ(x, y) dν(x) dµ(y) = lim

i,U
lim
j,V

∫∫
ϕ(x, y) dµi(x) dνj(y)

= lim
i,V

lim
j,U

∫∫
ϕ(x, y) dνj(x) dµi(y)

=

∫∫
ϕ(x, y) dν(y) dµ(x).

This proves the theorem. a

Now we prove the main result. Recall that an operator T : X → Y is weakly
compact if the image of the unit ball in X is relatively σ(Y, Y ∗)-compact in Y .
See [4].

Theorem 3.3. Let ϕ : A×B → [0, 1]. Then the following conditions are equivalent.

(1) ϕ is stable;
(2) There exists a reflexive Banach space E and a map (u, v) : A×B → BE ×

BE∗ such that ϕ(x, y) = 〈u(x), v(y)〉.

Proof. (1)⇒ (2): Define an operator T : `∞(A)∗ → `∞(B) by

Tµ(y) =

∫
ϕ(x, y)µ(x)

and an operator T ∗ : `∞(B)∗ → `∞(A) by

T ∗ν(x) =

∫
ϕ(x, y) ν(y).

By the preceding proposition, if µ ∈ `∞(A)∗ and µ ∈ `∞(B)∗,

〈Tµ, ν〉 =

∫∫
ϕ(x, y) dµ(x) dν(y) =

∫∫
ϕ(x, y) dν(x) dµ(y) = 〈T ∗ν, ν〉 .

We show that T is weakly compact, i.e., the image of the unit ball of `∞(A)∗ under
T is relatively σ(`∞(B), `∞(B)∗)-compact in `∞(B). By the Eberlein-Smulian the-
orem (see, for example, [3]), it suffices to prove that every sequence in T [B`∞(A)∗ ]
has a σ(`∞(B), `∞(B)∗)-convergent subsequence.



10 JOSÉ IOVINO

Let (gn) be a sequence in T [B`∞(A)∗ ]. Take (µn) in B`∞(A)∗ such that Tµn = gn.
Then, if ν ∈ `∞(B)∗,

〈gn, ν〉 = 〈Tµn, ν〉 = 〈T ∗ν, µn〉 .
By Alaoglu’s theorem, (µn) has a σ(`∞(A)∗, `∞(A))-convergent sequence (µnk

).
The above equation shows that then (gnk

) is σ(`∞(B), `∞(B)∗)-convergent.
Now we apply a result of W. J. Davis, T. Figiel, W. B. Johnson, and A. Pe lczyński [5]:

Every weakly compact operator factors through a reflexive Banach space. Hence,
there exists a reflexive Banach space E and operators U : `∞(A)∗ → E and V : E →
`∞(B) such that T = V ◦ U . If for x ∈ A and y ∈ B we let δx and δy be the corre-
sponding Dirac measures, we get

ϕ(x, y) = 〈Tδx, δy〉 = 〈V ◦ Uδx, δy〉 = 〈Uδx, V ∗δy〉 .
The theorem now follows by defining, for (x, y) ∈ A×B,

u(x) = Uδx, v(y) = V ∗δy.

(2) ⇒ (1): First notice that if a space E is reflexive, then BE is σ(E,E∗)-
compact, since σ(E,E∗) = σ(E∗∗, E∗) andBE∗∗ is σ(E∗∗, E∗)-compact by Alaoglu’s
theorem. (The converse is also true, but we won’t need it here.)

Assume that E and (u, v) are as in (2). Take sequences (am) in A, (bn) in B,
and ultrafilters U,V on N. Let

a = lim
m,U

u(am), in σ(E,E∗)

b = lim
n,V

v(bn), in σ(E∗, E).

Then,
lim
m,U

lim
n,V

ϕ(am, bn) = lim
m,U

lim
n,V
〈u(am), v(bn)〉 = 〈a, b〉 .

We obtain the same result if the order of the limits is reversed. Hence, ϕ is stable.
a
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