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Abstract. We present a generalization of Pedersen’s public-key threshold

cryptosystem. Pedersen’s protocol relies on the field properties of Zp. We
generalize the protocol so that the calculations can be performed in residue

rings that are not necessarily fields. The protocol presented here is polynomial-

time equivalent to Pedersen’s.

Introduction

In [Ped91], Pedersen proposed a public-key threshold cryptosystem that does
not require a trusted party for the generation of the private key. The calculations
are performed in the field Zp, where p is a large prime. The field structure of Zp is
required for two aspects of the protocol: (i) the existence of discrete logarithms and
(ii) the possibility of polynomial interpolation. The former provides the medium for
secure communication, while the latter makes it possible for any set of individuals
of a pre-established size to collaborate in order to generate the private key and use
it for decryption without its becoming known to any of these individuals.

It is not difficult to see that in Pedersen’s protocol the field Zp can be replaced
by any finite field. In this paper we generalize the protocol in a different direction:
instead of Zp, the calculations are carried out in any finite ring of the form ZN ,
where N = pt or N = 2pt. The restriction on N is necessary to ensure the existence
of primitive roots (and hence discrete logarithms) modulo N . While Pedersen’s pro-
tocol relies on the field structure to use polynomial interpolation, we show how this
requirement can be removed by employing, for instance, a version of the Asmuth-
Bloom secret sharing scheme [AB83].

Our protocol is polynomial-time equivalent, with respect to the exponent t, to
Pedersen’s.

The paper is organized as follows. In Section 1, we establish some preliminary
number theoretic lemmas. In Section 2, we describe the process of selection and
distribution of the keys. In Section 3, we show that the protocol indeed yields a
threshold cryptosystem. The process of encryption and decryption is described in
Section 4.

1. Preliminary Results

For real-valued functions f, g defined in some infinite interval (a,∞), we write

f(x) ∼ g(x) as x →∞
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if limx→∞ f(x)/g(x) = 1. For any real x, let π(x) denote the number of primes no
larger than x. The Prime Number Theorem (PNT) states that

π(x) ∼ x

log x
as x →∞,

where the logarithm is natural. The following lemma is an immediate consequence
of the PNT.

Lemma 1.1. For any fixed real number κ strictly greater than 1,

(1) π(κx)− π(x) ∼ (κ− 1)
x

log x
as x →∞.

Thus, for x large, there are plenty of primes in any interval of the form (x, κx];
roughly, one in every log x integers in this interval will be a prime. Moreover,
statements such as the following are true: if d is sufficiently large, about 90% of
all primes having at most d (base 10) digits have exactly d digits. (To see why,
apply Lemma 1.1 with κ = 10, x = 10d−1. The difference on the left-hand side
of equation (1) is equal to the number Pd of primes having exactly d digits (base
10). Hence, by Lemma 1.1, Pd ∼ 9 · 10d−1/ log(10d−1). By the PNT, the number
P≤d of primes having at most d digits (base 10) is π(10d) ∼ 10d/ log(10d). Thus,
Pd

P≤d
∼ 0.9 d

d−1 ∼ 0.9 as d →∞.)

Lemma 1.2. Let N , n, and k be positive integers with k ≤ n. Then, there exist
pairwise relatively prime positive integers m1,m2, . . . ,mn such that

(i) gcd(N,mi) = 1 for i = 1, 2, . . . , n,
(ii) N < m1 < m2 < . . . < mn,
(iii)

∏k
i=1 mi > N

∏n
i=n−k+2 mi.

Moreover, m1,m2, . . . ,mn can be chosen to be prime numbers.

Proof. Fix a base b > 1, denote logarithms base b by logb, and assume that all
numbers are written in base b. Any positive integer q has blogb qc+1 digits (base b).
Choose d > logb N+k and distinct primes m1, . . . ,mn, each having d digits (base b).
Then,

(2) d− 1 ≤ logb mi < d,

and since d − 1 > logb N + k − 1 > logb N , it follows that mi > N ; thus, the
primality of m1, . . . ,mn implies (i). Changing indexes, if necessary, condition (ii)
holds as well. As for condition (iii), upon taking logarithms (base b) of both sides,
it is seen to be equivalent to

(3)
k∑

i=1

logb mi −
n∑

i=n−k+2

logb mi > logb N.

By (2), the left-hand side of (3) is bounded below by k(d− 1)− (k − 1)d = d− k,
so our choice of d ensures that condition (iii) holds, via inequality (3). �

Remark 1.1. An elementary counting argument shows that, in the limit as X →∞,
if one chooses integers m1,m2, . . . ,mn ∈ [1, X] randomly (with uniform distribu-
tion), then the probability that they satisfy condition (i) above is strictly positive,
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and equal to∏
p prime

p|N

(
1 +

n∑
`=1

(−1)`p−`

) ∏
p prime

p-N

(
1−

n∑
`=2

(−1)`(`− 1)
(

n

`

)
p−`

)
.

Since testing for relative primality can be done efficiently (using the Euclidean
algorithm, for example), this observation suggests that a viable approach to finding
the numbers m1,m2, . . . ,mn is simply to choose them at random in the range given
by (2), above.

If N is a positive integer, (Z∗N , ·) denotes the multiplicative group of units modulo
N . This group is cyclic if and only if there exists g ∈ ZN such that every h ∈ Z∗N
is of the form gx for some integer x; such an element g is called a primitive root
modulo N , or a primitive root for N .

We will use the following result from basic number theory.

Theorem 1.1. The group (Z∗N , ·) is cyclic if and only if N is 2 or 4, or N is of
the form pt, or 2pt, where p is an odd prime and t a positive integer.

If g is a primitive root for N , x is an integer, and h ≡ gx (mod N), then x is
called the discrete logarithm (base b and modulo N) of h. The multiplicative group
Z∗N has ϕ(N) elements, where ϕ is Euler’s totient function. By Euler’s Theorem,
gϕ(N) ≡ 1 (mod N); therefore, discrete logarithms are only defined modulo ϕ(N),
since gx ≡ gx+ϕ(N) (mod N).

For our purposes, N will henceforth be a fixed integer of the form pt or 2pt for
some large prime p, which should be of a large enough size that finding discrete
logarithms modulo p is computationally unfeasible.

It will be necessary to find and fix a primitive root modulo N . We assume that
a primitive root g modulo p has already been found. This is feasible for primes p
of cryptographically good size (say vis-à-vis Pedersen’s original implementation).
The following proposition, which is a complement to Theorem 1.1, shows that it is
trivial to find a primitive root modulo N given one modulo p.

Proposition 1.1. Let p be an odd prime, and let g be a primitive root modulo p.
Then at least one of g and g + p is a primitive root modulo p2. Any primitive root
modulo p2 is also primitive modulo pt for all t. Additionally, if h is a primitive root
modulo pt, then either h or h+pt, whichever is odd, is a primitive root modulo 2pt.

Proof. See, for example, Lemma 1.4.5 in [Coh93]. �

Remark 1.2. Proposition 1.1 remains true if stated with minus signs, i.e., with g−p,
h− pt in place of g + p, h + pt (respectively).

Remark 1.3. As a note on implementation, one would apply Proposition 1.1 in
the following fashion to produce a primitive root modulo N given a primitive root
g̃ modulo p which one identifies with an integer 1 < g̃ < p: first “lift” g̃ to an
integer 1 < g < N by choosing a random uniform integer 0 ≤ k < N/p and
setting g = g̃ + kp. Then apply Proposition 1.1 to g. By applying the proposition
with minus signs (see Remark 1.2 above), one can force the so-found primitive root
modulo N to lie within the range [1, N).

Remark 1.4. If one knows the discrete logarithm x to the base g of an integer h
modulo N , then x (or, more properly, x modulo p−1) is itself the discrete logarithm
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of h modulo p to the same base g. Hence, an encryption scheme whose security
depends on the unfeasibility of finding discrete logarithms modulo N is no less
secure than one depending on the same unfeasibility modulo p.

Regarding the converse to the preceding remark, computationally, it is not sig-
nificantly more difficult to find discrete logarithms modulo N than modulo p; the
following result shows that this can be done by successive approximations.

First notice that if g is a primitive root modulo pt and n < t, then g is also prim-
itive modulo pn, hence gϕ(pn) ≡ 1 (mod pn). Also, g is still primitive modulo pn+1,
so it has order ϕ(pn+1) (mod pn+1), and hence gϕ(pn) ≡ 1 + νpn (mod pn+1) for
some ν not divisible by p. Moreover, g (mod pn+1) determines ν (mod p) uniquely.

Proposition 1.2. Let g be a primitive root modulo pt, h ∈ Z∗pt , and x ∈ Z. Suppose
that, for some n < t,

gx ≡ h (mod pn) and gx 6≡ h (mod pn+1).

Assume that gϕ(pn) ≡ 1+νpn (mod pn+1) with ν ∈ Z∗p and gx−h ≡ λpn (mod pn+1)
with λ ∈ Z∗p. If h̄, ν̄ denote the multiplicative inverses of h, ν modulo p and

y = x− h̄ν̄λϕ(pn),

it holds that
gy ≡ h (mod pn+1).

Proof. Let µ = −h̄ν̄λ. We have the following chain of congruences modulo pn+1

(the third line follows from the Binomial Theorem):

gy ≡ gx+µϕ(pn)

≡ (h + λpn)(1 + νpn)µ

≡ (h + λpn)(1 + µνpn)

≡ h + (λ + hµν)pn (mod pn+1).

By definition of µ, λ + hµν ≡ 0 (mod p), so the last term vanishes (mod pn+1)
and gy ≡ h (mod pn+1) as claimed. �

Repeated use (at most t − 1 times) of the preceding lemma allows one to com-
putationally efficiently “push up” a discrete logarithm modulo p to one modulo pt.
In the case that N = 2pt and g is a primitive root modulo N , g must be odd, as
must h in Lemma 1.2. In this case, gx ≡ h (mod pt) implies gx ≡ h (mod N).

Summarizing these findings:

Proposition 1.3. The discrete logarithm problems modulo p and modulo a fixed
N of the form pt or 2pt are equivalent, up to polynomial-time (in t and the number
of bits of N) calculations.

2. Selection and Distribution of the Keys

Consider a group of n members, denoted P1, P2, . . . , Pn. They choose a positive
integer k ≤ n, which is the number of individuals who must work together to
ascertain the private key. In addition, they must choose a large positive integer N
of the form pt or 2pt, where p is a large prime number and t is a positive integer,
thereby fixing the ring (ZN ,+, ·) in which they will implement the algorithm. The
members now choose a primitive root g modulo N . Also, the values m1,m2, . . . ,mn
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are chosen so as to satisfy conditions (i)–(iii) of Lemma 1.2 and M is defined by (5).
The integers mi are known by all n members. It will also be necessary to choose
T > t such that letting Ñ = pT we have

(4) ϕ(Ñ) = (1− p−1)Ñ > n ·mn = n max
i

mi.

By Proposition 1.1, we may assume that g is a primitive root modulo Ñ .
Define now

(5) M =
k∏

i=1

mi.

Since

M =
k∏

i=1

mi > N ·
n∏

i=n−k+2

mi

and m1 < m2 < . . . < mn, then for any permutation: π : {1, 2, . . . , n} →
{1, 2, . . . , n},
(6) M ≤ Mπ

k and M > NMπ
k−1,

where

Mπ
k =

k∏
i=1

mπ(i), Mπ
k−1 =

k−1∏
i=1

mπ(i).

2.1. Selection and Computation of the Public and Private Keys. For every
i = 1, 2, . . . , n:

• Member Pi secretly and randomly (with a uniform distribution) chooses an
integer xi such that 0 ≤ xi < ϕ(N)/n.

• Pi computes 0 < hi < N so hi ≡ gxi (mod N) but does not immediately
reveal this value. Instead, he commits to hi by converting it to binary form,
obtaining a random string ri, and computing his commitment C(hi, ri).
Pi then sends C(hi, ri) to the other members.

• After every member has sent his commitment C(hj , rj), Pi will disclose hi

to the other members. Pi will also verify that the values hj disclosed to
him are consistent with the commitments C(hj , rj) he previously received.

• h is then computed as:

h ≡
n∏

i=1

hi (mod N).

(It is irrelevant whether h is regarded as an integer or rather as a residue
class modulo N .)

• Define the private key x to be∗

x =
n∑

i=1

xi.

Note that 0 ≤ x < ϕ(N).

∗While for encryption and decryption purposes x can be regarded as a residue class mod-

ulo ϕ(N), it is important to note that here x is a specific non-negative integer. This will be
crucial to the implementation of the key-sharing scheme.
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• Define the public key as (Ñ , N, g, h). Note that

gx = g
Pn

i=1 xi =
n∏

i=1

gxi ≡
n∏

i=1

hi ≡ h (mod N).

Remark 2.1. While the xi are uniformly distributed on the interval [0, ϕ(N)/n),
the private key x =

∑n
i=1 xi is not uniformly distributed on [0, ϕ(N)) (as a random

variable). Thus, a brute-force attacker who knows h and seeks to recover the private
key x has some a priori information to direct his search: he will presumably check
whether gy ≡ h (mod N) for values of y having the largest probability of being
realized as values of the random variable x. Assuming that the cost (time or
resources) of checking whether a particular y is the private key is independent
of y (modulo ϕ(N)), then the amount of a priori information is measured by
the entropy of the distribution measure of the random variable x, relative to the
counting measure on the interval 0 ≤ q < ϕ(N), q ∈ Z. In the present context, if
Z is a random variable taking values in a finite set I (in our case, I = {k : 0 ≤ k <
ϕ(N)}) and if pZ(i) is the probability that Z = i, then the entropy S(Z) of Z is

S(Z) = −
∑
i∈I

pZ(i) log pZ(i),

with the convention that 0 log 0 = 0. The highest possible entropy is that of a uni-
form variable U on I (i. e., pU (i) = |I|−1 for all i ∈ I), namely S(U) = log |I| (here
|I| is the number of elements in I). The lower the entropy, the higher the a priori
information about the variable (otherwise said, entropy measures the “uncertainty”
of a variable). If I consists of the integers in the interval [0, ϕ(N)), then the entropy
of a uniformly distributed random variable on I is log ϕ(N) and one can roughly
interpret this quantity as the number of digits (bits) of the number of attempts in
a successful brute-force attack. For our choice of N , this entropy is about t log p.†

How much information is gained from the non-uniformity of the random vari-
able x? It is not hard to show that the entropy of x is about t log N − 1

2 log n.
Hence, the lack of uniformity results in an a priori weakening of the system no
worse than one due to (the number of digits of) the key space being reduced by
1
2 log n.

Remark 2.2. The random bitstring ri chosen above binds Pi to the integer that
he sent out. We assume that the probability of any two members choosing the
same random bitstring is small‡. The natural orderings of (i) the set of all mi, and
(ii) the set of chosen bitstrings will be used to determine which mi corresponds to
which member. Thus, for the rest of this protocol, the member corresponding to
the random bitstring ri will be known by the index i.

2.2. Generation of the Shares. Recall that the positive integer k ≤ n, which is
the number of individuals who must work together to ascertain x, has already been
chosen by the members. All n members will follow the key-distribution protocol
below. For i = 1, 2, . . . , n:

†Note that, in this context, entropy only measures the cost of a brute-force attack. In particular,
Proposition 1.3 provides enough information that an exhaustive search over a keyspace of size only

ϕ(p), plus an iterative procedure of length t, would suffice to find the private key.
‡Even if the bitstrings of Pi and Pj coincide, both Pi and Pj would realize it as soon as they

use the other’s commitment to verify the presently disclosed hi, hj .
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• Member Pi secretly and randomly (with a uniform distribution) chooses an
integer yi such that 0 ≤ yi < (M − ϕ(N))/(nN). Let y =

∑n
i=1 yi. Then,

0 ≤ y < (M − ϕ(N))/N and

(7) 0 ≤ x + Ny < M.

• Member Pi computes

(8) sij ≡ xi + yiN (mod mj), 0 ≤ sij < mj ,

for j = 1, 2, . . . , n.
• Pi computes and broadcasts σij ≡ gsij (mod Ñ), 0 ≤ σij < Ñ , j =

1, 2, . . . , n.
• Pi will wait until he has received the values σtj for t = 1, 2, . . . , n, t 6= i,

and j = 1, 2, . . . , n. He will then sign and secretly send sij to Pj for
j = 1, 2, . . . , n. Note that Pi simply keeps sii.

Remark 2.3. It is imperative that Pi not reveal the values secretly sent to
him by the other members (namely sji for j = 1, 2, . . . , n and i 6= j) since
these values are the information with which Pi will compute his share of
the private key (see below).

• Pi computes his share si of the private key as the sum of the values that
were secretly sent to him by the other members along with sii, namely,

si =
n∑

j=1

sji.

Equations (4) and (8) ensure that 0 ≤ si < ϕ(Ñ).
• Pi now must verify that the value sji that Pj secretly sent him is consistent

with the values σji that Pj broadcast to all the members; Pi must be sure
that Pj did not mislead him. To verify this, Pi must simply confirm that

gsi = g
Pn

j=1 sji =
n∏

j=1

gsji

≡ σji (mod Ñ).

If Pi finds that these values are inconsistent, he will immediately alert the
others of the error and publish the values sji along with his signature.

Note that member Pi was able to verify that his share si of the private key is
correct by verifying that the values sji, j = 1, . . . , n and j 6= i, secretly sent to
him were consistent with the previously broadcast values σji. However, the other
members do not know if Pi received correct information or even if he computed his
share correctly. They can verify this in the following way:

• Pi computes and sends σi ≡ gsi (mod Ñ), 0 ≤ σi < Ñ , to the other
members.

• Member Pj confirms that

σi ≡ gsi = g
Pn

j=1 sji =
n∏

j=1

gsji

≡
n∏

j=1

σij (mod Ñ).
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Thus, all members in the group have verified not only that their share of the
private key is correct, but also that the other members have computed their shares
correctly. At this point, the computation and verification of the members’ shares
is finished.

3. Protocol Provides a Threshold Cryptosystem

By definition (Equation 8),

sji ≡ xj + yjN (mod mi),

for j = 1, 2, . . . , n. Thus,

(9)
n∑

j=1

sji ≡
n∑

j=1

(xj + yjN) =
n∑

j=1

xj + N
n∑

j=1

yj (mod mi).

Using the definitions of si, x and y, Equation (9) can be rewritten as:

(10) si ≡ x + Ny (mod mi).

3.1. k Members Can Collaborate to Reveal the Private Key. Consider a
collusion C of k members Pπ(1), Pπ(2), . . . , Pπ(k) of the group. The members of C
construct the following system of congruences for the unknown Z:

Z ≡ sπ(1) (mod mπ(1))

Z ≡ sπ(2) (mod mπ(2))(11)
...

Z ≡ sπ(k) (mod mπ(k)).

Since the mi are relatively prime, the Chinese Remainder Theorem ensures that
this system has a solution which is unique modulo Mπ

k (and can be efficiently
computed). By Equations (6) and (7), we have 0 ≤ x + Ny < M ≤ Mπ

k . Then, by
(10), Z = z = x + Ny is the only solution to (11) with 0 ≤ Z <

∏
j mπ(j). The k

members then solve for X in

X ≡ z (mod N)

finding a unique solution X = x with 0 ≤ X < N (recall that 0 ≤ x < N by
construction). Hence, k members can work together in a collusion to discover the
private key.

3.2. Fewer Than k Members Cannot Find the Private Key. Suppose that
any k − 1 members, Pπ(1), Pπ(2), . . . , Pπ(k−1), form a collusion C, pool their shares
(sπ(i),mπ(i)), and attempt to find the private key x. We will show that these
k− 1 members will be unsuccessful and will indeed gain essentially no information
about x.

Again, recall from (10) that sπ(i) ≡ x + Ny (mod mπ(i)) for i = 1, 2, . . . , k − 1.
Analogously to what was done in the previous section, the members of C may solve
the system (11) (with k − 1 instead of k) in order to gain knowledge about the
x+Ny and, ultimately, about x itself. Let us now show that this information holds
little value for the members of C.
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Write xc =
∑

i xπ(i), xc̄ = x − xc, and similarly for yc and yc̄. Also let wc =
xc + Nyc and wc̄ = xc̄ + Nyc̄. Note that

0 ≤ xc <
k

n
ϕ(N) 0 ≤ yc <

k

n

M − ϕ(N)
N

0 ≤ wc <
k

n
M

(12)

0 ≤ xc̄ <

(
1− k

n

)
ϕ(N) 0 ≤ yc̄ <

(
1− k

n

)
M − ϕ(N)

N
0 ≤ wc̄ <

(
1− k

n

)
M

Those variables with a subscript ‘c’ are known to the collusion C, whereas those
with a subscript ‘c̄’ are not. Moreover, the system of congruences

Z ≡ sπ(1) − wc (mod mπ(1))

Z ≡ sπ(2) − wc (mod mπ(2))(13)
...

Z ≡ sπ(k−1) − wc (mod mπ(k−1))

is solved by wc̄ (mod Mπ
k−1). However, note that M/Mπ

k−1 > N by (6) so, in
principle, any solution Z = z of (13), say, the one with 0 ≤ z < Mπ

k−1, can be
lifted to roughly (1− k/n)M/Mπ

k−1 > (1− k/n)N distinct candidate values for wc̄.
Hence, a brute-force attack is quite unfeasible.

A slightly more refined argument goes as follows. The entropy of xc̄ can be
shown to be about 1

2 log(n − k) − log n + log N and that of yc̄ about 1
2 log(n −

k) − log n + log M − log N . In the case at hand, the entropy of wc̄ = xc̄ + Nyc̄ is
equal to the sum of the entropies of xc̄ and yc̄ (because the latter are independent,
and there is a bijection (xc̄, yc̄) ↔ wc̄). In conclusion, the entropy of wc̄ is about
log M − 2 log n+ log(n− k), hence practically as large as that of a uniform variable
in the range 0 ≤ W < M : the a priori information gained by C amounts to no
more than about 2 log n bits.

Remark 3.1. Because the private key can be found by a collusion of k members,
this cryptosystem assumes that at most k−1 members are dishonest. If k dishonest
members cheat, instead of giving their shares to the trusted party, they could find
and keep x for themselves.

4. Encryption and Decryption

Assume that a group of n members, P1, P2, . . . , Pn, has followed the above key
selection protocol (Section 2.1) to generate a group public key (Ñ , N, g, h). In
addition, each member computed his share of the private key via the key distribution
protocol set forth in Section 2.2; thus member Pi holds the ordered pair (si,mi)
for i = 1, 2, . . . , n.

Suppose that person B wants to send the group a message Q ∈ ZN . First, he will
acquire the group’s public key (Ñ ,N, g, h). He will then obtain a random number
1 ≤ l ≤ ϕ(N)− 1, compute γ ≡ gl (mod N) and δ ≡ Q ·hl (mod N), and send the
ordered pair (γ, δ) to the group as the ciphertext.

To decrypt (γ, δ), no less than k members must send their shares (si,mi) along
with the ciphertext (γ, δ) to a trusted party (e. g., a central server). The trusted
party will use the Chinese Remainder Theorem to extract x from the k shares
(Section 3.1). He will then use the private key x to decrypt the ciphertext (γ, δ) by
computing M ≡ (γx)−1 · δ (mod N) and will send the plaintext message M to the
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k members of the group who sent their shares. The trusted party will then destroy
these shares and the private key x. In this way, the group can continue to use the
same key. Then, the next time the group is sent a message, any k members can
again send their shares to the trusted party and receive the plaintext from him.
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