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Introduction

In recent years, there has been considerable interest in replicating the success-
ful development of first-order model theory in non first-order contexts. One such
context that has emerged as an important test case is that of metric structures,
i.e., structures whose sorts are metric spaces. The appeal of a rich model theory
of metric structures lies in that, besides opening up new fields of interaction be-
tween model theory and other areas of mathematics (e.g., functional analysis and
probability), it provides a natural generalization of the first-order theory; every
structure of the of the type studied in first-order model theory can be seen as a
metric structure where the underlying metric is discrete.

Several frameworks have been proposed to study metric structures from the
perspective of model theory, to wit:

· Henson’s logic of positive bounded formulas
· Ben-Yaacov’s compact abstract theories, or “cats”
· The framework of continuous logic developed by Ben-Yaacov and Usvy-

atsov.

Predecesssors include Chang and Keisler’s continuous model theory [CK66] and
Krivine’s real-valued logic [Kri74].

Henson’s logic of positive bounded formulas was developed in the mid 1970’s, ini-
tially to understand the connections between Banach spaces and their ultrapowers
(or nonstandard hulls). In the early papers [Hen74, Hen75, Hen76], Henson proved,
among other things, versions of the compactness and Löwenheim-Skolem theorems
for positive bounded formulas. This logical framework was used in various papers
by Henson, Heinrich, and Moore that appeared during the 1970’s and 1980’s to
study problems in Banach space geometry. (See, for example, [HHM83, HM83a,
HM83b, HHM83, HH86, HHM86, HHM87].)

In the 1990’s, in a series of papers [Iov94, Iov96, Iov97, Iov98, Iov99a, Iov99b,
Iov99c], the author developed the theory of forking and stability for this language,
showing that the resulting theory is surprisingly analogous to the first-order case.
The emphasis on these papers was on structures of functional analysis whose sorts
are Banach spaces, although it was observed that the basic apparatus could be
adapted, with relatively straightforward adjustments, for the more general con-
text of pointed metric spaces. A detailed introduction to the language of positive
bounded formulas, via Banach space ultrapowers, appeared in [HI02]. This paper
also includes an extensive bibliography.

Ben-Yaacov’s concept of compact abstract classes, or “cats”, originated in dif-
ferent settings; the concept is motivated by two situations: (i) existentially closed
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models of a universal first-order theory which not form an elementary class, and
(ii) hyperimaginaries in a strictly simple first-order theory. Ben Yaacov showed
that, in cats, positive formulas are powerful enough to yield not only model the-
oretic compactness, but also independence and the basic elements of simplicity
theory. For a survey, the reader is referred to [BY05a].

The context of cats is more general than that of metric structures. However,
Yen-Yaacov has shown that every cat that satisfies reasonable assumptions (namely,
compactness) is metric, i.e., it comes from metric structures. See [BY05b].

The framework of continuous logic was proposed in the last few years Ben-Yaacov
and Usvyatsov [BYU]. A self-contained introduction can be found in [BYBHU08].
The approach of continuous logic is similar to that of the logic of positive bounded
formulas (in fact both approaches are mathematically equivalent), but its distinctive
feature is that formulas are [0, 1]-valued rather than {0, 1}-valued; all continuous
functions of [0, 1]n into [0, 1] (n ∈ N) are regarded as n-ary connectives, and the
quantifiers of continuous logic are the inf and sup operators. An advantage of
this approach over that of positive bounded formulas is that in some situations it
is more natural to write functional equations (or inequations) involving composi-
tions of real-valued continuous functions, suprema, and infima, rather than positive
bounded axioms.

Continuous logic is a simplification of (and is equivalent to) the framework of
continuous model theory proposed by Chang and Keisler in the 1960’s. See [CK66].

All of these logics satisfy model theoretic compactness. Furthermore, all of them
are equivalent in terms of expressive power.

In this communication we consider the following questions:

(1) Is it a mere coincidence that these logics are equivalent?
(2) Is here a more expressive logic that yields a powerful, compact model theory

of metric structures?

We shall see that the answer to both questions is “no”. In fact, as will be shown
below, in essence, what makes the aforementioned logics equivalent is the fact that
they all satisfy a form of model-theoretic compactness.

1. Continuous logic

The result discussed in this communication is on abstract logics, and the model-
theoretic frameworks mentioned in the introduction are examples of logics to which
this result applies. As we introduce the concepts involved in the statement of the
result, we will use continuous logic (CL hereafter) as the motivating example. How-
ever, aside from the fact that of the four proposals mentioned in the introduction
CL is the most recent, the choice of CL as leading example in our context is rather
arbitrary; as will be clear, the hypothesis of the main result are weak enough to be
satisfied not only by many variations of the examples mentioned above, but also by
classical extensions of first-order logic, e.g., extensions of first-order by quantifiers.

In this section we provide the basics of the syntax and semantics of CL. Previous
familiarity with CL or any of the logics mentioned hereto is not needed to follow
the ideas presented here. The reader interested in further aspects of continuous
logic is referred to [BYU] or [BYBHU08]. (Either of these references can serve as
self-contained introduction.)
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The structures of CL are those of the form

M = (M (s), d(s), Ri, Fj , ak | s ∈ S, i ∈ I, j ∈ J, k ∈ K ),

where

· (M (s), d(s) | s ∈ S ) is a family of bounded metric spaces called the sorts
of M; the metrics d(s) will be called the metrics of M
· For each i ∈ I, Ri is a uniformly continuous function of the form

Ri : M
(s1) × · · · ×M (sn) → R,

where n is an integer s1, . . . , sn ∈ S; the functions Ri are called the predi-
cates of M
· For each j ∈ J , Fj is a uniformly continuous function of the form

Fj : M (s1) × · · · ×M (sn) →M (s0),

where n is an integer s0, . . . , sn ∈ S; the functions Fj are called the opera-
tions of M
· For each k ∈ K, ak is a distinguished element of one of the sorts of M; the

elements ak are called the constants of M.

These will be called metric structures. The restriction that the sorts be bounded
is given to facilitate the syntax and does not limit the class of structures under
consideration; indeed, if (M,d) is an unbounded metric space and a ∈ M , (M,d)
may be replaced by sorts (Mn, d), where Mn = {x ∈M | d(x, a) ≤ n }.

Examples of metric structures abound in classical mathematics: metric spaces,
Banach spaces, operator spaces, measure algebras, and the kinds of structures tra-
ditionally studied in model theory; in this last case, the unmentioned metrics are
regarded as discrete. More examples can be found in [BYBHU08], in [BYU], and
in [HI02], which focuses on structures based on Banach spaces.

Let

M = (M (s), d(s), Ri, Fj , ak | s ∈ S, i ∈ I, j ∈ J, k ∈ K ),

be a metric structure. A signature for M includes:

· A distinct binary relation symbol for each metric of M
· A distinct n-ary relation symbol for each n-ary predicate of M
· A distinct n-ary function symbol for each n-ary function of M
· A distinct constant symbol for each constant of M
· A modulus of uniform continuity for each of these functions; a modulus of

uniform continuity for a function is a map ε 7→ δ such that whenever two
arguments are, variable by variable, within distance δ, then their images
are within distance ε. If L is a signature for M we say that M is and
L-structure.

Since the sorts of M are bounded and the predicates of M are uniformly con-
tinuous, the range of each predicate is a bounded subset of R. Without loss of
generality, we can assume that the diameter of each sort of M is at most 1, and
that the range of each predicate of M is a subset of [0, 1].

Let M be an L-structure. To simplify the exposition, we will assume that M has
a single sort, (M,d). Also, to ease notation, we will use the same symbol to denote
any metric, relation, function, or constant of M and its respective metric, relation,
function, or constant symbol in L.
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The terms of L are defined as in ordinary first-order logic (i.e., starting with
an infinite set of variables and and iterating function symbols). The real-valued
formulas of L are defined inductively as follows:

· All the expressions of the form d(t1, t2), where t1, t2 are terms L, and all
the expressions of the form R(t1, . . . , tn), where R is an n-ary predicate
symbol and t1, . . . , tn are terms of L, are real-valued formulas of L.
· If ϕ1, . . . , ϕn are real-valued formulas of L and c : [0, 1]n → [0, 1] is a con-

tinuous function, then c(ϕ1, . . . , ϕn) is a real-valued formula of L.
· If x is a variable of L and ϕ is a real-valued formula of L, the expressions

supx ϕ and infx ϕ are real-valued formulas of L.

The analogy with first-order logic should be clear. In CL, formulas represent
[0, 1]-valued instead of {0, 1}-valued functions; the n-ary connectives of CL are all
the continuous functions of the form c : [0, 1]n → [0, 1], and the quantifiers are the
inf and sup operators.

For every real-valued formula of ϕ of L there exists a nonnegative integer n
such ϕ such that for every L-structure M as above, ϕ naturally defines a function
ϕM : Mn → [0, 1]. The formula ϕ is said to be a sentence if n = 0.

1.1. Definition. Let M and N be L structures.

(1) We say that M and N are elementarily equivalent, and write M ≡ N, if
ϕM = ϕN for every sentence ϕ of L.

(2) If M is a substructure of N, we say that M is an elementary substructure
of N if the structures (M, a | a ∈ M) and (N, a | a ∈ M) are elementarily
equivalent.

The following is a basic property of CL. The proof can be found in [BYBHU08]
and [BYU].

1.2. Theorem. Suppose that (I,<) is a linearly ordered set and (Mi | i ∈ I ) is a
family of L-structures such that Mi ≺ Mj whenever < j. Then, for every i ∈ I,
Mi ≺

⋃
i∈I Mi.

1.3. Definition. If M is a metric structure, let (M,R,≤) denote the structure
that includes, in addition to the structure already present in M, the set R as a
distinguished sort, and the order ≤ on R. An L-inequality is an expression of the
form ϕ ≤ r or ϕ ≥ r, where ϕ is a real-valued formula of L and r ∈ R.

Clearly, M ≡ N if and only if M and N satisfy the same inequalities.

2. Abstract Logics and Approximations

If L and L′ are multi-sorted signatures, a renaming is a bijection r : L→ L′ that
maps sort symbols onto sort symbols, relation symbols onto relation symbols, and
function symbols onto function symbols, respecting. If r : L → L′ is a renaming
and M is an L-structure, Mr denotes the structure that results from converting M

into an L′-structure through the map r. The structure Mr is called a renaming of
M.

Let us recall Lindstrom’s definition of abstract logic [Lin69]:

2.1. Definition. A logic L consists of the following items.

(1) A class of structures, called the structures of L, that is closed under iso-
morphisms, renamings, expansion by constants, and reducts.
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(2) For each multi-sorted signature L, a set L[L] called the L-sentences of L,
such that L[L] ⊆ L[L′] when L ⊆ L′.

(3) A binary relation
L

|= between structures and sentences of L such that:

(a) If M is an L-structure of L and M
L

|= ϕ, then ϕ ∈ L[L].

(b) Isomorphism Property. If M
L

|= ϕ and M is isomorphic to N, then

N
L

|= ϕ;
(c) Reduct Property. If L ⊆ L′, M is a L′-structure of L and ϕ ∈ L[L],

then M
L

|= ϕ if and only if M � L
L

|= ϕ;
(d) Renaming Property. Suppose that r : L→ L′ is a renaming. Then for

each sentence ϕ ∈ L[L] there exists a sentence ϕr ∈ L[L] such that

M
L

|= ϕ if and only if Mr
L

|= ϕr.

A logic L has conjunctions if for every pair of sentences ϕ,ϕ′ ∈ L[L] there exists
a sentence ψ ∈ L[L] such that

M
L

|= ψ if and only if M
L

|= ϕ and M
L

|= ϕ′.

The logic L is said to have negations if for every sentence ϕ ∈ L[L] there exists
a sentence ψ ∈ L[L] such that

M
L

|= ψ if and only if M 6
L

|= ϕ.

We now turn focus on model theoretic compactness. All the model theoretic
frameworks for metric structures mentioned in the introduction satisfy a form of
the compactness theorem. However, the form compactness satisfied by these logics
is not a literal translation of the classical compactness theorem of first-order logic;
the reason is that those logics that do not have negations in the sense defined above.
The statement of compactness for those more general contexts involves topological
perturbations. The compactness of first-order logic is a particular case when the
topologies involved in the perturbations are discrete. This is a peculiarity of first-
order due to the fact that its space of truth-values, {0, 1}, is a discrete. In [Iov01],
the author introduced a notion approximations sentences for abstract logics that
captures the kinds of perturbations needed to state model theoretic compactness
for logics with truth values that are not necessarily discrete. We now recall the
concept of approximation introduced in [Iov01]:

2.2. Definition. Let L be a logic. A system of approximations in L is a binary
relation / on the sentences of L such that

(1) / is transitive;
(2) If ϕ / ϕ′ and ϕ ∈ L[L], then ϕ′ ∈ L[L];

(3) If ϕ / ϕ′ and M
L

|= ϕ, then M
L

|= ϕ′.

If / is a system of approximations in a logic L, ϕ is a sentence of L and ϕ / ϕ′,
we will say that ϕ′ is a /-approximation (or simply, an “approximation”, if the
underlying system of approximations is clear from the context) of ϕ. A logic with
approximations is a pair (L, /), where L is a logic and / is a system of approxima-
tions in L.
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If (L, /) is a logic with approximations, M is a structure of L, and ϕ is a sentence

of L, we will say that M approximately satisfies ϕ, and write M
L

|=A ϕ, if M
L

|= ϕ′

for every /-approximation ϕ′ of ϕ.

2.3. Remarks.

(1) By condition (3) in Definition 2.2, the relation
L

|=A is weaker than
L

|=.
(2) Every logic L can be regarded naturally as a logic with approximations by

defining / as the diagonal relation on the sentences of L; in other words, the
only approximation of each sentence is itself. We will refer to this system
of approximations as the discrete system on L. Notice that, relative to the

discrete system, the relations
L

|= and
L

|=A are identical.

A theory of a logic L is a set of sentences of L. Let (L, /) be a logic with
approximations. We will say a theory Σ of L is consistent if there exists a structure
M of L which approximately satisfies every sentence in Σ. We will say that Σ is
finitely consistent if every finite subset of Σ is consistent.

2.4. Definition. Let (L, /) be a logic with approximations. We will say that (L, /)
satisfies the compactness theorem if it has the property that every theory of L which
is finitely consistent is consistent.

Let (L, /) be a logic with approximations. If M is a structure of L, we denote

by ThL
A(M) the set of sentences of L that are approximately satisfied by M. If

N is a structure of L, we write M ≺L
A N to indicate that M ⊆ N and the struc-

ture (N, a)a∈M approximately satisfies ThL
A((M, a)a∈M ). (Recall that the class of

structures of a logic is assumed to be closed under expansions by constants.)

2.5. Definition. Let (L, /) be a logic with approximations. We will say that (L, /)
satisfies the elementary chain property if the following condition holds. Whenever

M0 ≺L
A M1 ≺L

A . . . ≺L
A Mn ≺L

A . . . (n < ω)

there exists a structure M of L such that Mn ≺L
A M for every n < ω, and M is

uniquely determined by
⋃
nM.

3. Continuous Logic as an Abstract Logic

In this section we state the properties of CL that, as Theorem 4.1 shows, char-
acterize it.

(1) The class of structures of CL is the class of all metric structures.
(2) The L-sentences of CL, for a given signature L, are all the positive boolean

combinations of inequalities ϕ ≤ r or ϕ ≥ r, where ϕ is a real-valued
sentence of L and r ∈ R; see Definition 1.3.

(3) The relation
CL

|= is the obvious one: M
CL

|= ϕ ≤ r iff ϕM ≤ r, and M
CL

|= ϕ ≥ r
iff ϕM ≥ r

(4) CL has approximations: the approximations of the inequality ϕ ≤ r are
the inequalities of the form ϕ ≤ s, where s > r, and the approxima-
tions of ϕ ≥ r are the inequalities of the form ϕ ≥ s, where s < r; if
σ1, . . . , σn are inequalities and B(σ1, . . . , σn) is a positive boolean combi-
nation of σ1, . . . , σn, than the approximations of B(σ1, . . . , σn) are all the
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expressions of the form B(τ1, . . . , τn), where τi is an approximation of σi,
for i = 1, . . . , n. We will write σ < τ if τ is an approximation of σ.

(5) The pair (CL, <) satisfies the compactness theorem and the elementary
chain property; see Definitions 2.4 and 2.5.

(6) The pair (CL, <) has a weak negation: define
w¬(ϕ ≤ r) = ϕ ≥ r,

w¬(ϕ ≥
r) = ϕ ≤ r, and, inductively,

w¬(σ ∧ τ) =
w¬(σ) ∨ w¬(τ) and

w¬(σ ∨ τ) =
w¬(σ) ∧ w¬(τ).

4. The maximality of Continuous Logic

Let (L, /) and (L1, /1) be logics with approximations such that L and L1 have
the same structures. We will say that a sentence ϕ of L is reducible to L1 if
the following condition holds. For every /-approximation ϕ′ of ϕ there exist two
sentences ψ[ϕ,ϕ′] and ψ′[ϕ,ϕ′] of L1 such that:

(1) ψ[ϕ,ϕ′] /1 ψ
′[ϕ,ϕ′];

(2) If M is a structure of L,

M
L

|= ϕ implies M
L1

|= ψ[ϕ,ϕ′],

M
L1

|= ψ′[ϕ,ϕ′] implies M
L

|= ϕ′.

We will say that (L1, /1) is an extension of (L, /) if every sentence of L is
reducible to L1. Two logics with approximations will be called equivalent if they
are reducible to each other.

Intuitively, (L1, /1) is an extension of (L, /) if every sentence of L can be ap-
proximated by sentences of L′. As a trivial but important example let us notice
that if (L, /) is a logic with approximations, L1 is a logic with the same structures

as L, every sentence of L is a sentence of L1, and
L1

|= extends
L

|= (in the tradi-
tional mathematical sense of the word) then L1 paired with the discrete system of
approximations (see Remark 2.3) is an extension of (L, /).

let (L, /) be a logic with approximations. A weak negation on (L, /) is a monadic

operation
w¬ on the sentences of L such that

(1) If ϕ ∈ L[L], then
w¬ϕ ∈ L[L];

(2) If ϕ ∈ L[L] and M is an L-structure of L, then

M
L

|= ϕ or M |= w¬ϕ;

(3) If ϕ′ is an approximation of ϕ, then

M
L

|=A

w¬ϕ′ implies M 6
L

|=A ϕ.

Note that if L is a logic with negations and / is the discrete system of approx-
imations of L (see Remark 2.3), then the negation of L is a weak negation on
(L, /).

If (L, /) is a logic with approximations and M,N are structures of L, we write

M
L≡A N if ThL

A(M) ⊆ ThL
A(N) and ThL

A(N) ⊆ ThL
A(M). Notice that if (L, /) has

a weak negation, then each of these inclusions implies the other.
The following result was proved in [Iov01]:

4.1. Theorem. Suppose that (L, /) is a logic for metric structures and that (L, /)
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· extends (CL, <),
· satisfies the compactness theorem,
· satisfies the elementary chain property, and
· has a weak negation.

Then (L, /) is equivalent to (CL, <).

This theorem shows, among other things, the equivalence among all the logics
for metric structures mentioned here. For instance, let us show the equivalence
between CL and the logic LPB of positive bounded formulas. Both logics satisfy
the compactness theorem and the elementary chain property (the proofs can be
found in any basic expositions available for these two logics; see, for example,
[BYBHU08] for the CL and [HI02] for LPB), so we just have to note that CL is an
extension of LPB in the sense defined at the beginning of this section. Recall from
Section 1 that two metric structures M,N are elementarily equivalent in CL if and
only if the structures (M,R, <) and (N,R, <) satisfy the same inequalities of the
form ϕ ≤ r and ϕ ≥ r, where r ∈ R and ϕ is a [0, 1]-valued function built up from
the ([0, 1]-valued) predicates of L by using continuous functions c : [0, 1]n → [0, 1]
as connectives and the operators sup and inf as quantifiers. The positive bounded
formulas of a signature L are all the expressions that can be built up from the
basic inequalities of the form R(t1, . . . , tn) ≤ r and R(t1, . . . , tn) ≥ r, where r ∈ R,
t1, . . . , tn are terms of L and R is a predicate of L, by using the connectives ∧,∨ and
the first-order the quantifiers ∃,∀ (which range over the bounded sorts — hence the
name “positive bounded”). If ψ is a positive bounded formula, the approximations
of ψ are defined as the formulas that result from “relaxing” all the estimates that
occur in ψ, i.e., replacing all the inequalities of the form R(t1, . . . , tn) ≤ r that occur
in ψ by inequalities of the form R(t1, . . . , tn) ≤ s for some s > r and, similarly,
replacing all the inequalities of the form R(t1, . . . , tn) ≥ r by R(t1, . . . , tn) ≥ s for
some s < r. It is easy to see, by induction on the complexity of formulas, that
every positive bounded formula is reducible to CL: for the quantifier-free case, it
suffices to observe that every formula of the form∧

1≤i≤N

( ∨
1≤α≤m(i)

R1,α(t̄) ≤ r1,α ∨
∨

1≤β≤n(i)

R2,β(t̄) ≥ r2,β

)
,

where R1,α, R2,β are [0, 1]-valued predicates and r1,α, r2,β ∈ [0, 1] for 1 ≤ α ≤
m(i), 1 ≤ β ≤ n(i), is equivalent to the inequality

max
1≤i≤N

[
min( min

1≤α≤m(i)
R1,α(t̄) −̇ r1,α, min

1≤β≤n(i)
r2,β −̇ R2,β(t̄) )

]
≤ 0,

where −̇ denotes the truncated difference on [0, 1], i.e., x −̇ y is x − y if x ≥ y
and 0 if x < y; the truncated difference is a continuous function from [0, 1]2 into
[0, 1], and hence a binary connective of CL, so the preceding inequality is of the
type defined in Definition 1.3. The quantifier step of the induction is given by the
fact for every real-valued function f and every ε > 0,

· ∃x(f(x) ≤ r) =⇒ infx f(x) ≤ r =⇒ ∃x(f(x) ≤ r + ε)
· ∃x(f(x) ≥ r) =⇒ supx f(x) ≥ r =⇒ ∃x(f(x) ≥ r − ε)
· ∀x(f(x) ≤ r)⇐⇒ supx f(x) ≤ r
· ∀x(f(x) ≥ r)⇐⇒ infx f(x) ≥ r.

The continuous model theory framework of Chang and Keisler [CK66] extends
CL (the main difference is that Chang and Keisler include many more quantifiers);
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but then, since both logics satisfy the compactness theorem and the elementary
chain property, they must be equivalent.

First-order logic extends CL, since every inequality of the type defined in Defi-
nition 1.3 is a first-order sentence. The extension is proper because, as a logic for
metric structures, first-order does not satisfy the compactness theorem. (In fact,
the expressive power of first-order logic on Banach spaces is known to be quite
high [SS78].) It seems rather striking to us that there is no logic strictly between
CL and first-order satisfying the conditions of Theorem 4.1.
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[Iov94] José Iovino, Stable theories in functional analysis, Ph.D. thesis, University of Illinois
at Urbana-Champaign, 1994.

[Iov96] , The Morley rank of a Banach space, J. Symbolic Logic 61 (1996), no. 3,
928–941. MR 97j:03072

[Iov97] , Definability in functional analysis, J. Symbolic Logic 62 (1997), no. 2, 493–

505. MR 98i:03046
[Iov98] , Types on stable Banach spaces, Fund. Math. 157 (1998), no. 1, 85–95.

MR 99d:46013



10 JOSÉ IOVINO
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